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Introduction.

Algebraic group: a group that is also an algebraic variety such that the group operations are
maps of varieties.

Example. G = GLn(k), k = k

Goal: to understand the structure of reductive/semisimple affine algebraic groups over algebraically
closed fields k (not necessarily of characteristic 0). Roughly, they are classified by their Dynkin
diagrams, which are associated graphs.

Within G are maximal, connected, solvable subgroups, called the Borel subgroups.

Example. In G = GLn(k), a Borel subgroup B is given by the upper triangular matrices.

A fundamental fact is that the Borels are conjugate in G, and much of the structure of G is grounded
in those of the B. (Thus, it is important to study solvable algebraic groups). B decomposes as

B = T n U

where T ∼= Gn
m is a maximal torus and U is unipotent.

Example. With G = GLn(k), we can take T consisting of all diagonal matrices with U the upper
triangular matrices with 1’s along the diagonal.

G acts on its Lie algebra g = T1G. This action restricts to a semisimple action of T on g. From the
nontrivial eigenspaces, we get characters T → k× called the roots. The roots give a root system,
which allows us to define the Dynkin diagrams.

Example. G = GLn(k). g = Mn(k) and the action of G on g is by conjugation. The roots are given
by

diag(x1, . . . , xn) 7→ xix
−1
j

for 1 6 i 6= j 6 n.

Main References:
• Springer’s Linear Algebraic Groups, second edition
• Polo’s course notes at www.math.jussieu.fr/~polo/M2
• Borel’s Linear Algebraic Groups
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0. Algebraic geometry (review).

We suppose k = k. Possible additional references for this section: Milne’s notes on Algebraic
Geometry, Mumford’s Red Book.

0.1 Zariski topology on kn.

If I ⊂ k[x1, . . . , xn] is an ideal, then V (I) := {x ∈ kn |f(x) = 0 ∀f ∈ I}. Closed subsets are defined
to be the V (I). We have ⋂

α

V (Iα) = V (
∑

Iα)

V (I) ∪ V (J) = V (I ∩ J)

Note: this topology is not T2 (i.e., Hausdorff). For example, when n = 1 this is the finite comple-
ment topology.

0.2 Nullstellensatz.

Theorem 1 (Nullstellensatz).

(i)

{radical ideals I in k[x1, . . . , xn]}
V
�
I
{closed subsets in kn}

are inverse bijections, where I(X) = {f ∈ k[x1, . . . , xn] | f(x) = 0 ∀x ∈ X}

(ii) I, V are inclusion-reversing

(iii) If I ↔ X, then I prime ⇐⇒ X irreducible.

It follows that the maximal ideals of k[x1, . . . , xn] are of the form

ma = I({a}) = (x1 − a1, . . . , xn − an), a ∈ k.
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0.3 Some topology.

X is a topological space.

X is irreducible if X = C1 ∪ C2, for closed sets C1, C2 implies that Ci = X for some i.

⇐⇒ any two non-empty open sets intersect

⇐⇒ any non-empty open set is dense

Facts.
• X irreducible =⇒ X connected.
• If Y ⊂ X, then Y irreducible ⇐⇒ Y irreducible.

X is noetherian if any chain of closed subsets C1 ⊃ C2 ⊃ · · · stabilises. If X is noetherian, any
irreducible subset is contained in a maximal irreducible subset (which is automatically closed), an
irreducible component. X is the union of its finitely many irreducible components:

X = X1 ∪ · · · ∪Xn

Fact. The Zariski topology on kn is noetherian and compact (a consequence of Nullstellensatz).

0.4 Functions on closed subsets of kn

X ⊂ kn is a closed subset.

X = {a ∈ kn | {a} ⊂ X ⇐⇒ ma ⊃ I(X)} ↔ { maximal ideals in k[x1, . . . , xn]/I(X)}
Define the coordinate ring of X to be k[X] := k[x1, . . . , xn]/I(X). The coordinate ring is a re-
duced, finitely-generated k-algebra and can be regarded as the restriction of polynomial functions
on kn to X.

• X irreducible ⇐⇒ k[X] integral domain
• The closed subsets of X are in bijection with the radical ideals of k[X].

Definition 2. For a non-empty open U ⊂ X, define

OX(U) := {f : U → k | ∀x ∈ U, ∃x ∈ V ⊂ U, V open, and ∃ p, q ∈ k[x1, . . . , xn]

such that f(y) =
p(y)

q(y)
∀y ∈ V }

OX is a sheaf of k-valued functions on X:

• for all U , OX(U) is a k-subalgebra of {set-theoretic functions U → k}
• U ⊂ V , then f ∈ OX(V ) =⇒ f |U ∈ OX(U);

• if U =
⋃
Uα, f : U → k function, then f |Uα ∈ OX(Uα) ∀α =⇒ f ∈ OX(U).

Facts.
• OX(X) ∼= k[X]
• If f ∈ OX(X), D(f) := {x ∈ X | f(x) 6= 0} is open and these sets form a basis for the topology.
OX(D(f)) ∼= k[X]f .
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Definitions 3. A ringed space is a pair (X,FX) of a topological space X and a sheaf of k-valued
functions on X. A morphism (X,FX)→ (Y,FY ) of ringed spaces is a continuous map φ : X → Y
such that

∀V ⊂ Y open , ∀f ∈ FY (V ), f ◦ φ ∈ FX(φ−1(V ))

An affine variety (over k) is a pair (X,OX) for a closed subset X ⊂ kn for some n (with OX as
above). Affine n-space is defined as An := (kn,Okn).

Theorem 4. X 7→ k[X], φ 7→ φ∗ gives an equivalence of categories

{ affine varieties over k }op → {reduced finitely-generated k-algebras}

If φ : X → Y is a morphism of varieties, then φ∗ : k[Y ] → k[X] here is f + I(Y ) 7→ f ◦ φ + I(X).
The inverse functor is given by mapping A to m-Spec(A), the spectrum of maximal ideals of A,
along with the appropriate topology and sheaf.

0.5 Products.

Proposition 5. A,B finitely-generated k-algebras. If A,B are reduced (resp. integral domains),
then so is A⊗k B.

From the above theorem and proposition, we get that ifX,Y are affine varieties, then m-Spec(k[X]⊗k
k[Y ]) is a product of X and Y in the category of affine varieties.

Remark 6. X×Y is the usual product as a set, but not as topological spaces (the topology is finer).

Definition 7. A prevariety is a ringed space (X,FX) such that X = U1 ∪ · · · ∪ Un with the Ui
open and the (Ui,F|Ui) isomorphic to affine varieties. X is compact and noetherian. (This is too
general of a construction. Gluing two copies of A1 along A1 − {0} (a pathological space) gives an
example of a prevariety.)

Products in the category of prevarieties exist: if X =
⋃n
i=1, Y =

⋃m
j=1 Vj (Ui, Vj affine open), then

X × Y =
⋃n,m
i,j Ui × Vj , where each Ui × Vj is the product above. As before, this gives the usual

products of sets but not topological spaces.

Definition 8. A prevariety is a variety if the diagonal ∆X ⊂ X ×X is a closed subset. (This is
like being T2!)

• Affine varieties are varieties; X,Y varieties =⇒ X × Y variety.
• If is Y a variety, then the graph of a morphism X → Y is closed in X × Y .
• If Y is a variety, f, g : X → Y , then f = g if f, g agree on a dense subset.
• If X, Y are irreducible, then so is X × Y .
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0.6 Subvarieties.

Let X be a variety and Y ⊂ X a locally closed subset (i.e., Y is the intersection of a closed and
an open set, or, equivalently, Y is open in Y ). There is a unique sheaf OY on Y such that (Y,OY )
is a prevariety and the inclusion (Y,OY )→ (X,OX) is a morphism such that

for all morphisms f : Z → X such that f(Z) ⊂ Y , f factors through the inclusion Y → X.

Concretely,

OY (V ) = {f : V → k | ∀x ∈ V, ∃U ⊂ X,x ∈ U open, and ∃ f̃ ∈ OX(U) such that f |U∩V = f̃ |U∩V }.

Remarks 9. Y,X as above.
• If Y ⊂ X is open, then OY = OX |Y .
• Y is a variety (∆Y = ∆X ∩ (Y × Y ))
• If X is affine and Y is closed, then Y is affine with k[Y ] ∼= k[X]/I(Y )
• If X is affine and Y = D(f) is basic open, then Y is affine with k[Y ] ∼= k[X]f . (Note that general
open subsets of affine varieties need not be affine (e.g., A2 − {0} ⊂ A2).)

It’s easy to see from the above definitions that if X, Y are varieties and Z ⊂ X, W ⊂ Y are locally
closed, then Z ×W ⊂ X × Y is locally closed and the subvariety structure on Z ×W inside the
product X × Y agrees with the product structure on the product of subvarieties Z, W .

Theorem 10. Let φ : X → Y be a morphism of affine varieties.

(i) φ∗ : k[Y ]→ k[X] surjective ⇐⇒ φ is a closed immersion (i.e., an isomorphism onto a closed
subvariety)

(ii) φ∗ : k[Y ]→ k[X] is injective ⇐⇒ φ(X) = Y (i.e., φ is dominant)

0.7 Projective varieties.

Pn = kn+1−{0}
k× as a set. The Zariski topology on Pn is given by defining, for all homogeneous ideals

I, V (I) to be a closed set. For U ⊂ Pn open,

OPn(U) := {f : U → k | ∀x ∈ U ∃F,G ∈ k[x0, . . . , xn], homogeneous of the same degree

such that f(y) =
F (y)

G(y)
, for all y in a neighbourhood of x.}

Let Ui = {(x0 : · · · : xn) ∈ Pn | xi 6= 0} = Pn − V ((xi)), which is open. An → Ui given by

x 7→ (x1 : · · · : xi−1 : 1 : xi : · · · : xn)

gives an isomorphism of ringed spaces, which implies that Pn is a prevariety; in fact, it is an irre-
ducible variety.

Definitions 11. A projective variety is a closed subvariety of Pn. A quasi-projective variety
is a locally closed subvariety of Pn.

Facts.
• The natural map An+1 − {0} → Pn is a morphism
• OPn(Pn) = k
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0.8 Dimension.

X here is an irreducible variety. The function field of X is k(X) := lim−→
U 6=∅ open

OX(U), the germs

of regular functions.

Facts.
• For U ⊂ X open, k(U) = k(X).
• For U ⊂ X irreducible affine, k(U) is the fraction field of k[U ].
• k(X) is a finitely-generated field extension of k.

Definition 12. The dimension of X is dimX := tr.degk k(X).

Theorem 13. If X is affine, then dimX = Krull dimension of k[X] (which is the maximum length
of chains of C0 ( · · · ( Cn of irreducible closed subsets).

Facts.
• dim An = n = dim Pn

• If Y ( X is closed and irreducible, then dimY < dimX
• dim(X × Y ) = dimX + dimY

For general varieties X, define dimX := max{dimY | Y is an irreducible component}.

0.9 Constructible sets.

A subset A ⊂ X of a topological space is constructible if it is the union of finitely many locally
closed subsets. Constructible sets are stable under finite unions and intersection, taking comple-
ments, and taking inverse images under continuous maps.

Theorem 14 (Chevalley). Let φ : X → Y be a morphism of varieties.

(i) φ(X) contains a nonempty open subset of its closure.

(ii) φ(X) is constructible.

0.10 Other examples.

• A finite dimensional k-vector space is an affine variety: fix a basis to get a bijection V
∼→ kn,

giving V the corresponding structure (which is actually independent of the basis chosen). Intrin-
sically, we can define the topology and functions using polynomials in linear forms of V , that is,
from Sym(V ∗) =

⊕∞
n=0 Symn(V ∗): k[V ] := Sym(V ∗).

• Similarly, PV = V−{0}
k× . As above, use a linear isomorphism V

∼→ kn+1 to get the structure of a
projective space; or, intrinsically, use homogeneous elements of Sym(V ∗).
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1. Algebraic groups: beginnings.

1.1 Preliminaries.

We will only consider the category of affine algebraic groups, a.k.a. linear algebraic groups. In
future, by “algebraic group” we will mean “affine algebraic group”. There are three descriptions of
the category:

(1)
Objects: affine varieties G over k with morphisms µ : G × G → G (multiplication), i : G → G
(inversion), and ε : A0 → G (i.e., a distinguished point e ∈ G) such that the group axioms hold,
i.e., that the following diagrams commute.

G×G×G µ×id
//

id×µ
��

G×G
µ

��

G×A0 id×ε
//

%%

G×G
µ

��

A0 ×Gε×id
oo

yy

G
(id,i)

//

��

G×G
µ

��

G
(i,id)
oo

��

G×G µ
// G G A0 ε // G A0εoo

Maps: morphisms of varieties compatible with the above structure maps.

(2)
Objects: commutative Hopf k-algebras, which are reduced, commutative, finitely-generated k-
algebras A with morphisms ∆ : A → A ⊗ A (co-multiplication), i : A → A (co-inverse, also called
antipode), and ε : A → k (co-unit) such that the co-group axioms hold, i.e., that the following
diagrams commute:

A⊗A⊗A A⊗A∆⊗id
oo A⊗ k A⊗Aid⊗ε

oo
ε⊗id

// k ⊗A A A⊗A
(id,i)

//
(i,id)
oo A

A⊗A

id⊗∆

OO

A
∆

oo

∆

OO

A

∆

OOee ::

k

OO

A

∆

OO

ε
oo

ε
// k

OO

Maps: k-algebra morphisms compatible with the above structure maps.

(3)
Objects: functors(

reduced finitely-generated (commutative) k-algebras

)
→
(

groups

)
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that are representable as set-valued functors;
Maps: natural transformations.

Here are the relationships:
(1)↔ (2) : G 7→ A = k[G] gives an equivalence of categories. Note that k[G×G] = k[G]⊗ k[G].
(2)↔(3) : A 7→ Homalg(A,−) gives an equivalence of categories by Yoneda’s lemma.

Examples.
• G = A1 =: Ga

In (1): µ : (x, y) 7→ x+ y (sum of projections), i : x 7→ −x, ε : ∗ 7→ 0
In (2): A = k[T ], ∆(T ) = T ⊗ 1 + 1⊗ T , i(T ) = −T , ε(T ) = 0
In (3): the functor Homalg(k[T ],−) sends an algebra R to its additive group (R,+).

• G = A1 − {0} =: Gm = GL1

In (1): µ : (x, y) 7→ xy (product of projections), i : x 7→ x−1, ε : ∗ 7→ 1
In (2): A = k[T, T−1], ∆(T ) = T ⊗ T , i(T ) = T−1, ε(T ) = 1
In (3): the functor Homalg(k[T, T−1],−) sends an algebra R to its group of units (R,×).

• G = GLn
In (1): GLn(k) ⊂Mn(k) ∼= kn

2
with the usual operations is the basic open set given by det 6= 0

In (2): A = k[Tij , det(Tij)
−1]16i,j6n, ∆(Tij) =

∑
k Tik ⊗ Tkj

In (3): the functor R 7→ GLn(R)

• G = V finite-dimensional k-vector space
Given by the functor R 7→ (V ⊗k R,+)

• G = GL(V ), for a finite-dimensional k-vector space V
Given by the functor R 7→ GL(V ⊗k R)

Examples of morphisms.
• For λ ∈ k×, x 7→ λx is an automorphism of Ga

Exercise. Show that Aut(Ga) ∼= k×. Note that End(Ga) can be larger, as we have the Frobenius
x 7→ xp when char k = p > 0.

• For n ∈ Z, x 7→ xn gives an automorphism of Gm.
• g 7→ det g gives a morphism GLn → Gm.

Note that if G,H are algebraic groups, then so is G×H (in the obvious way).

1.2 Subgroups.

A locally closed subgroup H 6 G is a locally closed subvariety that is also a subgroup. H has a
unique structure as an algebraic group such that the inclusion H → G is a morphism (it is given
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by restricting the multiplication and inversion maps of G).

Examples. Closed subgroups of GLn:
• G = SLn, (det = 1)
• G = Dn, diagonal matrices (Tij = 0 ∀ i 6= j )
• G = Bn, upper-triangular matrices (Tij = 0 ∀ i > j )
• G = Un, unipotent matrices (upper-triangular with 1’s along the diagonal)
• G = On or Spn, for a particular J ∈ GLn with J t = ±J , these are the matrices g with gtJg = J
• G = SOn = On ∩ SLn

Exercise. Dn
∼= Gn

m. Multiplication (d, n) 7→ dn gives an isomorphism Dn×Un → Bn as varieties.
(Actually, Bn is a semidirect product of the two, with Un E Bn.)

Remark 15. Ga, Gm, and GLn are irreducible (latter is dense in An2
). SLn is irreducible, as it

is defined by the irreducible polynomial det− 1. In fact, SOn, Spn are also irreducible.

Lemma 16.

(a) If H 6 G is an (abstract) subgroup, then H is a (closed) subgroup.

(b) If H 6 G is a locally closed subgroup, then H is closed.

(c) If φ : G→ H is a morphism of algebraic groups, then kerφ, imφ are closed subgroups.

Proof.
(a). Multiplication by g is an isomorphism of varieties G → G: gH = gH and Hg = Hg
=⇒ H ·H ⊂ H. Inversion is an isomorphism of varieties G→ G: (H)−1 = H−1 = H.

(b). H ⊂ H is open and H ⊂ G is closed, so without loss of generality suppose that H ⊂ G is
open. Since the complement of H is a union of cosets of H, which are open since H is, it follows
that H is closed.

(c). kerφ is clearly a closed subgroup. imφ = φ(G) contains a nonempty open subset U ⊂ φ(G)
by Chevalley; hence, φ(G) =

⋃
h∈φ(G) hU is open in φ(G) and so φ(G) is closed by (b).

Lemma 17. The connected component G0 of the identity e ∈ G is irreducible. The irreducible and
connected components of G0 coincide and they are the cosets of G0. G0 is an open normal subgroup
(and thus has finite index).

Proof. Let X be an irreducible component containing e (which must be closed). Then X ·X−1 =
µ(X ×X−1) is irreducible and contains X; hence, X = X ·X−1 is a subgroup as it is closed under
inverse and multiplication. So G =

∐
gX∈G/X gX gives a decomposition of G into its irreducible

components. Since G has a finite number of irreducible components, it follows that (G : X) < ∞
and X is open. Hence, the cosets gX are the connected components: X = G0. Moreover, G0 is
normal since gG0g−1 is another connected component containing e.

Corollary 18. G connected ⇐⇒ G irreducible

Exercise. φ : G→ H =⇒ φ(G0) = φ(G)0
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1.3 Commutators.

Proposition 19. If H,K are closed, connected subgroups of G, then

[H,K] = 〈[h, k] = hkh−1k−1 | h ∈ H, k ∈ K〉

is closed and connected. (Actually, we just need one of H,K to be connected. Moreover, without
any of the connected hypotheses, Borel shows that [H,K] is closed.)

Lemma 20. Let {Xα}α∈I be a collection of irreducible varieties and {φα : Xα → G} a collection
of morphisms into G such that e ∈ Yα := φα(Xα) for all α. Then the subgroup H of G generated
by the Yα is connected and closed. Furthermore, ∃α1, . . . , αn ∈ I, ε1, . . . , εn ∈ {±1} such that
H = Y ε1

α1
· · ·Y εn

αn .

Proof of Lemma. Without loss of generality suppose that φ−1
α = i ◦φα : Xα → G is also among the

maps for all α. For n > 1 and a ∈ In, write Ya := Yα1 · · ·Yαn ⊂ G. Ya is irreducible, and so Y a is
as well. Choose n, a such that dimY a is maximal. Then for all m, b ∈ Im,

Y a ⊂ Y a · Y b ⊂ Ya · Yb = Y (a,b)

(second inclusion as in Lemma 16(a)) which by maximality implies that Y a = Y(a,b) and Y b ⊂ Y a.
In particular, this gives that

Y a · Y a ⊂ Y(a,a) = Y a and Y
−1
a ⊂ Y a

Y a is a subgroup. By Chevalley, there is a nonempty U ⊂ Ya open in Y a.

Claim: Y a = U · U ( =⇒ Y a = Ya · Ya = Y(a,a) =⇒ done.)

g ∈ Y a =⇒ gU−1 ∩ U 6= ∅ =⇒ g ∈ U · U

Proof of Proposition. For k ∈ K, consider the morphisms φk : H → G, h 7→ [h, k]. Note that
φk(e) = e.

Corollary 21. If {Hα} are connected closed subgroups, then so is the subgroup generated by them.

Corollary 22. If G is connected, then its derived subgroup DG := [G,G] is closed and connected.

Definitions 23. Inductively define DnG := D(Dn−1G) = [Dn−1G,Dn−1G] with D0G = G.

G ⊃ DG ⊃ D2G ⊃ · · ·

is the derived series of G, with each group a normal subgroup in the previous (even in G). G is
solvable if DnG = 1 for some n > 0. Now, inductively define CnG := [G, Cn−1G] with C0G = G.

G ⊃ CG ⊃ C2G ⊃ · · ·

is the descending central series of G, with each group normal in the previous (even in G). G is
nilpotent if CnG = 1 for some n > 0.
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Recall the following facts of group theory:
• nilpotent =⇒ solvable
• G solvable (resp. nilpotent) =⇒ subgroups, quotients of G are solvable (resp. nilpotent)
• If N E G, then N and G/N solvable =⇒ G solvable.

Examples.
• Bn is solvable. (DBn = Un)
• Un is nilpotent.

1.4 G-spaces.

A G-space is a variety X with an action of G on X (as a set) such that G×X → X is a morphism
of varieties. For each x ∈ X we have a morphism fx : G → X be given by g 7→ gx, and for each
g ∈ G we have an isomorphism tg : X → X given by x 7→ gx. StabG(x) = f−1

x ({x}) is a closed
subgroup.

Examples.
• G acts on itself by g ∗ x = gx or xg−1 or gxg−1. (Note that in the case of the last action,
Stab(x) = ZG(x) is closed and so the center ZG =

⋂
x∈GZG(x) is closed.)

• GL(V )× V → V, (g, x) 7→ g(x)
• GL(V )×PV → PV (exercise)

Proposition 24.

(a) Orbits are locally closed (so each orbit is a subvariety and is itself a G-space).

(b) There exists a closed orbit.

Proof.
(a). Let Gx be an orbit, which is the image of fx. By Chevalley, there is an nonempty U ⊂ Gx
open in Gx. Then Gx =

⋃
g∈G gU is open in Gx.

(b). Since X is noetherian, we can choose an orbit Gx such that Gx is minimal (with respect to
inclusion). We will show that Gx is closed. Suppose otherwise. Then Gx−Gx is nonempty, closed
in Gx by (a), and G-stable (by the usual argument); let y be an element in the difference. But
then Gy ( Gx. Contradiction. Hence, Gx is closed.

Lemma 25. If G is irreducible, then G preserves all irreducible components of X.

Exercise.

Suppose θ : G×X → X gives an affine G-space. Then G acts linearly on k[X] by

(g · f)(x) := f(g−1x), i.e., g · f = t∗g−1(f)

13



Definitions 26. Suppose a group G acts linearly on a vector space W . Say the action is locally
finite if W is the union of finite-dimensional G-stable subspaces. If G is an algebraic group, say the
action is locally algebraic if it is locally finite and, for any finite-dimensional G-stable subspace
V , the action θ : G× V → V is a morphism.

Proposition 27. The action of G on k[X] is locally algebraic. Moreover, for all finite-dimensional
G-stable V ⊂ k[X], then θ∗(V ) ⊂ k[G]⊗ V .

Proof. tg−1 factors as

tg−1 : X → G×X θ−→ X

x 7→ (g−1, x)

t∗g−1 : k[X]
θ∗−→ k[G]⊗ k[X]

(evg−1 ,id)
−−−−−−→ k[X]

Fix f ∈ k[X] and write θ∗(f) =
∑n

i=1 hi ⊗ fi, so

g · f = t∗g−1(f) =
n∑
i=1

hi(g
−1)fi

Hence, the G-orbit of f is contained in
∑n

i=1 kfi, implying local finiteness.

Let V ⊂ k[X] be finite-dimensional and G-stable, and pick basis (ei)
n
i=1. Extend the ei to a basis

{ei}i ∪ {e′α}α of k[X]. Write

θ∗ei =
∑
j

hij ⊗ ej +
∑
α

h′iα ⊗ e′α

=⇒ g · ei =
∑
j

hij(g
−1)ej +

∑
α

h′iα(g−1)e′α ∈ V

=⇒ h′iα(g−1) = 0 ∀ g, i, α
=⇒ h′iα = 0 ∀ i, α

Hence, θ∗(V ) ⊂ k[G]⊗ V . Moreover, we see that G× V → V is a morphism, as it is given by

(g,
∑
i

λiei) 7→
∑
i,j

λjhij(g
−1)ej

It follows that the action of G on k[X] is locally algebraic.

Theorem 28 (Analogue of Cayley’s Theorem). Any algebraic group is isomorphic to a closed
subgroup of some GLn.

Proof. G acts on itself by right translation, so (g · f)(γ) = f(γg). By Proposition 27 we know that
this gives a locally algebraic action on k[G]. Let f1, . . . , fn be generators of k[G]. Without loss of
generality, the fi are linearly independent and V =

∑n
i=1 kfi is G-stable. Write

g · fi =
∑
j

hji(g
−1)fj =

∑
j

h′ji(g)fj

14



where hji ∈ k[G] and h′ji : g 7→ hji(g
−1). It follows that φ : G→ GL(V ) given by g 7→ (h′ij(g)) is a

morphism of algebraic groups. It remains to show that φ is a closed immersion.

We have h′ij ∈ imφ∗ for all i, j, as they are the image of projections. Moreover,

fi(g) = (g · fi)(e) =
∑
j

h′ji(g)fj(e) =⇒ fi ∈
∑
j

kh′ji ⊂ imφ∗

Since the fi generate k[G], it follows that φ∗ is surjective; that is, φ is a closed immersion.

1.5 Jordan Decomposition.

Let V be a finite-dimensional k-vector space. α ∈ GL(V ) is semisimple if it is diagonalisable, and
is unipotent if 1 is its only eigenvalue. If α, β commute then

α and β semisimple (resp. unipotent) =⇒ αβ semisimple (resp. unipotent)

Proposition 29. α ∈ GL(V )

(i) ∃! αs (semisimple), αu (unipotent) ∈ GL(V ) such that α = αsαu = αuαs.

(ii) ∃ ps(x), pu(x) ∈ k[X] such that αs = ps(α), αu = pu(α).

(iii) If W ⊂ V is an α-stable subspace, then

(α|W )s = αs|W , (α|V/W )s = αs|V/W
(α|W )u = αu|W , (α|V/W )u = αu|V/W

(iv) If f : V1 → V2 linear with αi ∈ GL(Vi) for i = 1, 2, then

f ◦ α1 = α2 ◦ f =⇒

{
f ◦ (α1)s = (α2)s ◦ f
f ◦ (α1)u = (α2)u ◦ f

(v) If αi ∈ GL(Vi) for i = 1, 2, then

(α1 ⊗ α2)s = (α1)s ⊗ (α2)s

(α1 ⊗ α2)u = (α1)u ⊗ (α2)u

Proof sketch.
(i) – existence:
A Jordan block for an eigenvalue λ decomposes as

λ 1
. . .

. . .

. . . 1
λ

 =


λ

. . .
. . .

λ




1 λ−1

. . .
. . .
. . . λ−1

1
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The left factor is semisimple and the right is unipotent, and so they both commute.
(i) – uniqueness:
If α = αsαu = α′sα

′
u, then α−1

s α′s = α−1
u α′s is both unipotent and semisimple, and thus is the

identity.

(ii): This follows from the Chinese Remainder Theorem.

(iii): Use (ii) + uniqueness.

(iv): Since f : V1 � im f ↪→ V2, it suffices to consider the cases where f is injective or surjective,
in which we can invoke (iii).

(v): Exercise.

Definition 30. An (algebraic) G-representation is a linear G-action on a finite-dimension
k-vector space such that G×V → V is a morphism of varieties, which is equivalent to G→ GL(V )
being a morphism of algebraic groups. Note that if G → GL(V ) is given by g 7→ (hij(g)), then
G× V → V is given by (g,

∑
i λiei) 7→

∑
i,j λihji(g)ej.

Lemma 31. Suppose ρ : G → GL(V ) is an algebraic representation. Then there is a unique G-
linear map η : V → V ⊗ k[G] such that (1⊗ evg) ◦ η = ρ(g) for all g ∈ G. Moreover, η is injective
and η ◦ h = (1 ⊗ h) ◦ η for all h ∈ G, i.e. as map of G-representations η : V ↪→ V0 ⊗ k[G], where
V0 is V with the trivial G-action and G acts on k[G] by right translation.

Proof. Suppose η(ei) =
∑

j ej ⊗ fji for some fij ∈ k[G]. Then (1⊗ evg) ◦ η = ρ(g) for all g implies
that fij = hij in the notation above, so η is unique, and conversely it shows that η exists. Moreover,
η is injective since ρ(g) is injective.
To see that η ◦h = (1⊗h) ◦ η holds, it suffices to check it after evaluating it at any v ∈ V and then
applying 1⊗ evg on both sides. We get equality, since ρ(g)ρ(h)(v) = ρ(gh)(v).

Proposition 32. Suppose that for all algebraic G-representations V , there is a αV ∈ GL(V ) such
that

(i) αk0 = idk0, where k0 is the one-dimensional trivial representation.

(ii) αV⊗W = αV ⊗ αW

(iii) If f : V →W is a map of G-representations, then αW ◦ f = f ◦ αV .

Then ∃! g ∈ G such that αV = gV for all V .

Proof. From (iii), if W ↪→ V is a G-stable subspace, then αV |W = αW . If V is a local algebraic
G-representation, then ∃! αV such that αV |W = αW for all finite-dimensional G-stable W ⊂ V .
Note that (ii), (iii) still hold for locally algebraic representations. Also note that from (iii) it follows
that αV⊕W = αV ⊕ αW . Define α = αk[G] ∈ GL(k[G]), where G acts on k[G] by (gf)(λ) = f(λg).

Claim. α is a ring automorphism.
m : k[G]⊗ k[G]→ k[G] is a map of locally algebraic G-representations: f1( · g)f2( · g) = (f1f2)(·g).
Thus, by (ii) and (iii), α ◦m = m ◦ (α⊗ α), and so α(f1f2) = α(f1)α(f2).
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Therefore, the composition k[G]
α−→ k[G]

eve−−→ k is a ring homomorphism and is equal to evg for
some unique g.

Claim. α(f) = gf ∀f , i.e., α = gk[G].
By above α(f)(e) = f(g). Also, if `(λ)(f) := f(λ−1 · ), then `(λ) : k[G]→ k[G] is G-linear by (iii):

α ◦ `(λ) = `(λ) ◦ α =⇒ α(f)(λ−1) = f(λ−1g) =⇒ α(f) = gf

Now if V is a G-rep, η : V ↪→ V0 ⊗ k[G] is G-linear, by Lemma 31, and so

αV0⊗k[G] ◦ η = η ◦ αV

Since
αV0⊗k[G] = αV0 ⊗ αk[G] = idV0 ⊗ gk[G] = gV0⊗k[G]

and
gV0⊗k[G] ◦ η = η ◦ gV

and the fact that η is injective, it follows that αV = gV . (g is unique, as G→ GL(k[G]) is injective.
Exercise!)

Theorem 33. Let G be an algebraic group.

(i) ∀ g ∈ G ∃! gs, gu ∈ G such that for all representations ρ : G→ GL(V )

ρ(gs) = ρ(g)s and ρ(gu) = ρ(g)u

and g = gsgu = gugs.

(ii) For all φ : G→ H
φ(gs) = φ(g)s and φ(gu) = φ(g)u

Proof.
(i). Fix g ∈ G. For all G-representations V , let αV := (gV )s. If f : V → W is G-linear, then
f ◦ gV = gW ◦ f implies that f ◦ αV = αW ◦ f by Proposition 29. Also, αk0 = ids = id, and

αV⊗W = (gV⊗W )s = (gV ⊗ gW )s = αV ⊗ αW

(the last equality following from Proposition 29). By Proposition 32, there is a unique gs ∈ G
such that αV = (gs)V for all V , i.e., ρ(gs) = ρ(g)s. Similarly for gu. From a closed immersion
G ↪→ GL(V ), from Theorem 28, we see that g = gsgu = gugs.

(ii). Given φ : G→ H, let ρ : H → GL(V ) be a closed immersion. Then

ρ(φ(g∗)) = ρ(φ(g))∗ = ρ(φ(g)∗)

where the first equality is by (i) for G (as φ ◦ ρ makes V into a G-representation) and the second
equality is by (i) for H.

Exercise. What is the Jordan decomposition in Ga? How about in a finite group?
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Remark 34. F : (G-representations) → (k-vector spaces) denotes the forgetful functor, then
Proposition 32 says that

G ∼= Aut⊗(F )

where the left side is the group of natural isomorphisms F → F respecting ⊗.
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2. Diagonalisable and elementary
unipotent groups.

2.1 Unipotent and semisimple subsets.

Definitions 35.

Gs := {g ∈ G | g = gs}
Gu := {g ∈ G | g = gu}

Note that Gs ∩ Gu = {e} and Gu is a closed subset of G (embedding G into a GLn, Gu is the
closed subset consisting of g such that (g− I)n = 0. Gs, however, need not be closed (as in the case
G = B2)).

Corollary 36. If gh = hg and g, h ∈ G∗, then gh, g−1 ∈ G∗, where ∗ = s, u.

Proposition 37. If G is commutative, then Gs, Gu are closed subgroups and µ : Gs ×Gu → G is
an isomorphism of algebraic groups.

Remark 38. This will be generalised to connected nilpotent groups in Proposition 131.

Proof. Gs, Gu are subgroups by Corollary 36 and Gu is closed by a remark above. Without loss of
generality, G ⊂ GL(V ) is a closed subgroup for some V . As G is commutative, V =

⊕
λ:Gs→k× Vλ

(a direct sum of eigenspaces for Gs) and G preserves each Vλ. Hence, we can choose a basis for
each Vλ such that the G-action is upper-triangular (commuting matrices are simultaneously upper-
triangular-isable), and so G ⊂ Bn and Gs = G ∩ Dn. Then G ↪→ Bn followed by projecting to
the diagonal Dn gives a morphism G → Gs, g 7→ gs; hence, g 7→ (gs, g

−1
s g) gives a morphism

G→ Gs ×Gu, one inverse to µ.

Definition 39. G is unipotent if G = Gu.

Example. Un is unipotent, and so is Ga (as Ga
∼= U2).

Proposition 40. If G is unipotent and φ : G → GLn, then there is a γ ∈ GLn such that
im (γφγ−1) ⊂ Un.

Proof. We prove this by induction on n. Suppose that this true for m < n, let V be an n-dimensional
vector space, and φ : G → GL(V ). Suppose that there is a G-invariant subspace 0 ( W1 ( V .
Let W2 is complementary to W1, so that V = W1 ⊕W2, and let φi : G → GL(Vi) be the induced
morphisms for i = 1, 2, so that φ = φ1 ⊕ φ2. Since n > dimW1,dimW2, there are γ1, γ2 ∈ GL(V )
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such that im (γiφiγ
−1
i ) consists of unipotent elements for i = 1, 2. If γ = γ1 ⊕ γ2, then it follows

that im (γφγ−1) consists of unipotent elements as well.

Now, suppose that there does not exists such a W1, so that V is irreducible. For g ∈ G

tr (φ(g)) = n =⇒ ∀h ∈ G tr ((φ(g)− 1)φ(h)) = tr (φ(gh))− tr (φ(h)) = n− n = 0

=⇒ ∀x ∈ End(V ) tr ((φ(g)− 1)x) = 0, by Burnside’s theorem

=⇒ φ(g)− 1 = 0

=⇒ φ(g) = 1

=⇒ imφ = 1

(Recall that Burnside’s Theorem says that G spans End(V ) as a vector space.)

Remark 41. Here’s a sketch proof of Burnside’s theorem, which works for any abstract subgroup
G of GL(V ) even: let A be the k-span of G insider End(V ). This is a k-subalgebra of End(V )
acting irreducibly on V .
We’ll prove more generally that any (possibly non-commutative) k-algebra A with dimk A < n2

cannot have an irreducible module of k-dimension n. By replacing A by A/rad(A), where rad(A)
is the Jacobson radical of A, we may assume WLOG that A is semisimple. Then A ∼=

∏r
i=1Mni(k)

by the Artin-Wedderburn theorem (since k is algebraically closed!). Now the irreducible modules of
this ring are precisely the modules kni with A acting naturally via the i-th projection. Hence any
irreducible module has dimension ni ≤

√
dimk A < n.

Corollary 42. Any irreducible representation of a unipotent group is trivial.

Corollary 43. Any unipotent G is nilpotent.

Proof. Un is nilpotent.

Remark 44. The converse is not true; any torus is nilpotent (the definition of a torus to come
immediately). More generally we will see that any connected nilpotent group is a product of a torus
and a connected unipotent group.

2.2 Diagonalisable groups and tori.

Definitions 45. G is diagonalisable if G is isomorphic to a closed subgroup of Dn
∼= Gn

m (n > 0).
G is a torus if G ∼= Dn (n > 0). The character group of G is

X∗(G) := Hom(G,Gm) (morphisms of algebraic groups)

It is an abelian group under multiplication ((χ1χ2)(g) = χ1(g)χ2(g)) and is a subgroup of k[G]×.

Recall the following result:

Proposition 46 (Dedekind). Suppose X∗(G) is a linearly independent subset of k[G].

The proof shows in fact that characters are linearly independent for any (abstract) group.
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Proof. Suppose that
∑n

i=1 λiχi = 0 in k[G], λi ∈ k. Without loss of generality, n > 2 is minimal
among all possible nontrivial linear combinations (so that λi 6= 0 ∀i). Then

∀ g, h,

{
0 =

∑
λiχi(g)χi(h)

0 =
∑
λiχi(g)χn(h)

=⇒ ∀ h, 0 =

n−1∑
i=1

λi[χi(h)− χn(h)]χi

By the minimality of n, we must have that the coefficients are are all 0; that is, ∀ i, h χi(h) =
χn(h) =⇒ χi = χn. We still arrive at a contradiction.

Proposition 47. The following are equivalent:

(i) G is diagonalisable.

(ii) X∗(G) is a basis of k[G] and X∗(G) is finitely-generated.

(iii) G is commutative and G = Gs.

(iv) Any G-representation is a direct sum of 1-dimensional representations.

Proof.
(i) ⇒ (ii): Fix an embedding G ↪→ Dn. k[Dn] = k[T±1

1 , . . . , T±1
n ] – as seen from restricting

Tij , det(Tij)
−1 ∈ k[GLn] – has a basis of monomials T a11 · · ·T ann , ai ∈ Z, each of which is in X∗(G):

diag(x1, . . . , xn) 7→ xa11 · · ·x
an
n

Hence, X∗(Dn) ∼= Zn (by Proposition 46). The closed immersion G → Dn gives a surjection
k[Dn] → k[G], inducing a map X∗(Dn) → X∗(G), χ 7→ χ|G. im (X∗(Dn) → X∗(G)) spans k[G]
and is contained in X∗(G), which is linearly independent. Hence, X∗(G) is a basis of k[G] and we
have the surjection

Zn ∼= X∗(Dn)� X∗(G)

implying the finite-generation.

(ii) ⇒ (iii): Say χ1, . . . , χn are generators of X∗(G). Define a morphism φ : G → GLn by g 7→
diag(χ1(g), . . . , χn(g)).

g ∈ kerφ =⇒ χi(g) = 1 ∀ i
=⇒ χ(g) = 1 ∀ χ ∈ X∗(G)

=⇒ f(g) = 0 ∀f ∈Me = {g =
∑
χ

λχχ ∈ k[X] | 0 = g(e) =
∑
χ

λχ}

=⇒ Me ⊂Mg

=⇒ Me = Mg

=⇒ g = e

So φ is injective, which implies that G is commutative and G = Gs.
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(iii) ⇒ (iv): Let φ : G → GLn be a representation. imφ is a commuting set of diagonalisable
elements, which means we can simultaneously diagonalise them.

(iv) ⇒ (i): Pick φ : G ↪→ GLn (Theorem 28). By (iii), without loss of generality, suppose that
imφ ⊂ Dn. Hence, φ : G ↪→ Dn.

Corollary 48. Subgroups and images under morphisms of diagonalisable groups are diagonalisable.

Proof. (iii).

Observations:
• char k = p =⇒ X∗(G) has no p-torsion.
• k[G] ∼= k[X∗(G)] as algebras (k[X∗(G)] being a group algebra).
• For χ ∈ X∗(G),

∆(χ) = χ⊗ χ, i(χ) = χ−1, ε(χ) = 1

Indeed,

∆(χ)(g1, g2) = χ(g1g2) = χ(g1)χ(g2) = (χ⊗ χ)(g1, g2)

i(χ)(g) = χ(g−1) = χ(g)−1 = χ−1(g)

ε(χ) = χ(e) = 1

Theorem 49. Let p = char k.(
diagonalisable algebraic groups

)
X∗−−→

(
finitely-generated abelian groups (with no p-torsion if p > 0)

)
G

��

� // X∗(G)

H � // X∗(H)

OO

is a (contravariant) equivalence of categories.

Proof. It is well-defined by the above. We will define an inverse functor F . GivenX ∼= Z⊕
⊕s

i=1 Z/niZ
from the category on the right, we have that its group algebra k[X] is finitely-generated and reduced:

k[X] ∼= k[Z]⊗r ⊗
s⊗
i=1

k[Z/niZ] ∼= k[T±1]⊗r ⊗
s⊗
i=1

k[T ]/(Tni − 1)

Moreover, k[X] is a Hopf algebra, which is easily checked, defining

∆ : ex 7→ ex ⊗ ex, i : ex 7→ ex−1 = e−1
x , ε : ex 7→ 1

whereX has been written multiplicatively and k[X] =
⊕

x∈X kex. Define F by F (X) = m-Spec(k[X]).
Above, we saw that FX∗(G)) ∼= G as algebraic groups.
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X∗(F (X)) = Hom(F (X),Gm)

= HomHopf-alg(k[T, T−1], k[X])

= {λ ∈ k[X]×(corresponding to the images of T ) |∆(λ) = λ⊗ λ}

For an element above, write λ =
∑

x∈X λxex (almost all of the λx ∈ k of course being zero). Then

∆(λ) =
∑
x

λx(ex ⊗ ex) and λ⊗ λ =
∑
x,x′

λxλx′(ex ⊗ e′x)

Hence,

λxλx′ =

{
λx, x = x′

0, x 6= x′

So, λx 6= 0 for an unique x ∈ X, and

λ2
x = λ =⇒ λx = 1 =⇒ λ = ex ∈ X

Thus we have X∗(F (X)) ∼= X as abelian groups. The two functors are inverse on maps as well, as
is easily checked.

Corollary 50.

(i) The diagonalisable groups are the groups Gr
m ×H, where H is a finite group of order prime

to p.

(ii) For a diagonalisable group G,

G is a torus ⇐⇒ G is connected ⇐⇒ X∗(G) is free abelian

Proof. Define µn := ker(Gm
n−→ Gm), which is diagonalisable. If (n, p) = 1, then k[µn] = k[T ]/(Tn−

1) (Tn−1 is separable) and X∗(µn) ∼= Z/nZ. Since X∗(Gm) ∼= Z and X∗(G×H) ∼= X∗(G)⊕X∗(H),
the result follows from Theorem 49.

Corollary 51. Aut(Dn) ∼= GLn(Z)

Fact/Exercise. If G is diagonalisable, then

G×X∗(G)→ Gm, (g, χ) 7→ χ(g)

is a “perfect bilinear pairing”, i.e., it induces isomorphisms X∗(G)
∼→ Hom(G,Gm) and G

∼→
HomZ(X∗(G),Gm) (as abelian groups). Moreover, it induces inverse bijections

{ closed subgroups of G} ←→ { subgroups Y of X∗(G) such that X∗(G)/Y has no p-torsion}
H 7−→ H⊥

Y ⊥ ←− [ Y
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Fact. Say
1→ G1 → G2 → G3 → 1

is exact if the sequence is set-theoretically exact and the induced sequence of lie algebras

0→ LieG1 → LieG2 → LieG3 → 0

is exact. (See Definition 92.) Suppose the Gi are diagonalisable, so that LieGi ∼= HomZ(X∗(Gi), k).
Then the sequence of the Gi is exact if and only if

0→ X∗(G3)→ X∗(G2)→ X∗(G1)→ 0

Remark 52.
1→ µp → Gm

p−→ Gm → 1

is set-theoretically exact, but

0→ X∗(Gm)
p−→ X∗(Gm)→ X∗(µp)→ 0

is not if char k = p (in which case X∗(µp) = 0).

Definition. The group of cocharacters of G are

X∗(G) := Hom(Gm, G)

If G is abelian, then X∗(G) is an abelian group.

Proposition 53. If T is a torus, then X∗(T ), X∗(T ) are free abelian and

X∗(T )×X∗(T )→ Hom(Gm,Gm) ∼= Z, (χ, λ) 7→ χ ◦ λ

is a perfect pairing.

Proof.

X∗(T ) = Hom(Gm, T ) ∼= Hom(X∗(T ),Z).

The isomorphism follows from Theorem 49. Since X∗(T ) is finitely-generated free abelian by
Corollary 50, we have that X∗(T ) ∼= Hom(X∗(T ),Z) is free abelian as well. Moreover, since

Hom(X,Z)×X → Z, (α, x) 7→ α(x)

is a perfect pairing for any finitely-generated free abelian X, it follows from the isomorphism above
that the pairing in question is also perfect.

Proposition 54 (Rigidity of diagonalisable groups). Let G,H be diagonalisable groups and V a
connected affine variety. If φ : G × V → H is a morphism of varieties such that φv : G → H,
g 7→ φ(g, v) is a morphism of algebraic groups for all v ∈ V , then φv is independent of v.
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Proof. Under φ∗ : k[H]→ k[G]⊗ k[V ], for χ ∈ X∗(H), write

φ∗(χ) =
∑

χ′∈X∗(G)

χ′ ⊗ fχχ′

Then

φ∗v(χ) =
∑
χ′

fχχ′(v)χ ∈ X∗(G) =⇒ ∀χ′, v fχχ′(v) ∈ {0, 1}

=⇒ ∀χ′ f2
χχ′ = fχχ′

=⇒ ∀χ′ V = V (fχχ′) t V (1− fχχ′)
=⇒ ∀χ′ fχχ′ is constant, since V is connected

=⇒ ∀φv is independent of v

Corollary 55. Suppose that H ⊂ G is a closed diagonalisable subgroup. Then NG(H)0 = ZG(H)0

and NG(H)/ZG(H) is finite. (NG(H),ZG(H) are easily seen to be closed subgroups.)

Proof. Applying the above proposition to the morphism

H ×NG(H)0 → H, (h, n) 7→ nhn−1

we get that nhn−1 = h for all h, n. Hence

NG(H)0 ⊂ ZG(H) ⊂ NG(H)

and the corollary immediately follows.

2.3 Elementary unipotent groups.

Define A(G) := Hom(G,Ga), which is an abelian group under addition of maps; actually, it is an
R-module, where R = End(Ga). Note that A(Gn

a) ∼= Rn. R = End(Ga) can be identified with

{f ∈ k[Ga] = k[x] | f(x+ y) = f(x) + f(y) in k[x, y]} =

{
{λx | λ ∈ k}, char k = p = 0

{
∑
λix

pi | λi ∈ k}, char k = p > 0

Accordingly,

R ∼=

{
k, p = 0

noncommutative polynomial ring over k, p > 0

Proposition 56. G is an algebraic group. The following are equivalent:

(i) G is isomorphic to a closed subgroup of Gn
a (n > 0).

(ii) A(G) is a finitely-generated R-module and generates k[G] as a k-algebra.
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(iii) G is commutative and G = Gu (and Gp = 1 if p > 0).

Definition 57. If one of the above conditions holds, then G is elementary unipotent. Note that
(iii) rules out Z/pnZ as elementary unipotent when n > 1.

Theorem 58.

( elementary unipotent groups )
A−→ ( finitely-generated R-modules )

is an equivalence of categories.

Proof. For the inverse functor, see Springer 14.3.6.

Corollary 59.

(i) The elementary unipotent groups are Gn
a if p = 0, and Gn

a × (Z/pZ)s if p > 0

(ii) For an elementary unipotent group G,

G is isomorphic to a Gn
a ⇐⇒ G is connected ⇐⇒ A(G) is free

Theorem 60. Suppose G is a connected algebraic group of dimension 1, then G ∼= Ga or Gm.

Proof.
Claim: G is commutative.
Fix γ ∈ G and consider φ : G → G given by g 7→ gγg−1. Then φ(G) is irreducible and closed,
which implies that φ(G) = {γ} or φ(G) = G. Now, either φ(G) = {γ} for all γ ∈ G, in which case
G is commutative and the claim is true, or φ(G) = G for at least one γ. Suppose the second case
holds with a particular γ and fix an embedding G ↪→ GLn. Consider the morphism ψ : G→ An+1

which takes g to the coefficients of the characteristic polynomial of g, det(T · id− g). ψ is constant
on the conjugacy class φ(G), implying that ψ is constant. Hence, every g ∈ G, e included, has the
same characteristic polynomial: (T − 1)n. Thus

G = Gu =⇒ G is nilpotent =⇒ G ) [G,G] =⇒ [G,G] = 1 =⇒ G is commutative

Now, by Proposition 37,
G ∼= Gs ×Gu =⇒ G = Gs or G = Gu

as dimension is additive. In the former case, G ∼= Gm by Corollary 50. In the latter, if we can
prove that G is elementary unipotent, then G ∼= Ga by Corollary 59; we must show that Gp = 1
when p > 0 by Proposition 56. Suppose that Gp 6= 1, so that Gp = G. Then G = Gp = Gp

2
= · · · .

But (g − 1)n = 0 in GLn and so for pr > n,

0 = (g − 1)p
r

= gp
r − 1 =⇒ gp

r
= 1 =⇒ {e} = Gp

r
= G

which is a contradiction.
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3. Lie algebras.

If X is a variety and x ∈ X, then the local ring at x is

OX,x := lim−→
U open
U3x

OX(U) = germs of functions at x =
{(f, U) | f ∈ OX(U)}

∼

where (f, U) ∼ (f ′, U ′) if there is an open neighbourhood V ⊂ U ∩ U ′ of x for which f |V = f ′|V .
There is a well-defined ring morphism evx : OX,x → k given by evaluating at x: [(f, U)]] 7→ f(x).
OX,x is a local ring (hence the name) with unique maximal ideal

mx =: ker evx = {[(f, U)]. | f(x) = 0}

for if f /∈ mx, then f−1 is defined near x, implying that f ∈ O×X,x.

Fact. If X is affine and x corresponds to the maximal ideal m ⊂ k[X] (via Nullstellensatz), then
OX,x ∼= k[X]m. By choosing an affine chart in X at x, we see in general that OX,x is noetherian.

3.1 Tangent Spaces.

Analogous to the case of manifolds, the tangent space to a variety X at a point x is

TxX := Derk(OX,x, k) = {δ : OX,x → k | δ is k-linear, δ(fg) = f(x)δ(g) + g(x)δ(f)}

(so k is viewed as a OX,x-module via evx.) TxX is a k-vector space.

Lemma 61. Let A be a k-algebra, ε : A→ k a k-algebra morphism, and m = ker ε. Then

Derk(A, k)
∼→ (m/m2)∗, δ 7→ δ|m

Proof. An inverse map is given by sending λ to a derivation defined by x 7→

{
0, x = 1

λ(x), x ∈ m
.

Checking this is an exercise.

Hence, TxX ∼= (mx/m
2
x)∗ is finite-dimensional.

Examples.
• If X = An, then TxX has basis

∂

∂x1

∣∣∣∣
x

, . . . ,
∂

∂xn

∣∣∣∣
x
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.
• For a finite-dimensional k-vector space V , Tx(V ) ∼= V .

Definition 62. X is smooth at x if dimTxX = dimX. Moreover, X is smooth if it is smooth
at every point. From the above example, we see that An is smooth.

If φ : X → Y we get φ∗ : OY,φ(x) → OX,x and hence

dφ : TxX → Tφ(x)Y, δ 7→ δ ◦ φ∗

Remark 63. If U ⊂ X is an open neighbourhood of x, then d(U ↪→ X) : TxU
∼→ TxX. More

generally, if X ⊂ Y is a locally closed subvariety, then TxX embeds into TxY .

Theorem 64.
dimTxX > dimX

with equality holding for all x in some open dense subset.

Note that if X is affine and x corresponds to m ⊂ k[X], then the natural map k[X]→ k[X]m = OX,x
induces an isomorphism

TxX
∼→ Derk(k[X], k), (k being viewed as a k[X]-modules via evx)

which is isomorphic to (m/m2)∗ by Lemma 61. So, we can work without localising.

Remark 65. If G is an algebraic group, then G is smooth by Theorem 64 since

d(`g : x 7→ gx) : TγG
∼→ TgγG

The same holds for homogeneous G-spaces (i.e., G-spaces for which the G-action is transitive).

3.2 Lie algebras.

Definition 66. A Lie algebra is a k-vector space L together with a bilinear map [, ] : L× L→ L
such that

(i) [x, x] = 0 ∀x ∈ L ( =⇒ [x, y] = −[y, x])

(ii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ L

Examples.
• If A is an associative k-algebra (maybe non-unital), then [a, b] := ab − ba gives A the structure
of a Lie algebra.
• Take A = End(V ) and as above define [α, β] = α ◦ β − β ◦ α.
• For L an arbitrary k-vector space, define [, ] = 0. When [, ] = 0 a Lie algebra is said to be abelian.

We will construct a functor

( algebraic groups )
Lie−−→ ( Lie algebras )
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As a vector space, LieG = TeG. dim LieG = dimG by above remarks.

The following is another way to think about TeG. Recall that we can identify G with the functor

R 7→ Homalg(k[G], R) := G(R)

(where k[G] is a reduced finite-dimensional commutative Hopf k-algebra). The Hopf (i.e., co-group)
structure on R induces a group structure on G(R), even when R is not reduced..

Lemma 67.

LieG ∼= ker

(
G(k[ε]/(ε2))→ G(k)

)
as abelian groups.

Proof. Write the algebra morphism θ : k[G]→ k[ε]/(ε2) as given by f 7→ eve(f) + δ(f) · ε for some
δ : k[G]→ k. δ is a derivation.

Examples.
• For G = GLn, G(R) = GLn(R), and we have

LieG = ker

(
GLn(k[ε]/(ε2)→ GLn(k)

)
= {I +Aε |A ∈Mn(k)} ∼→Mn(k)

Explicitly, the isomorphism Lie GLn →Mn(k) is given by δ 7→ (∂(Tij)).
• Intrinsically, for a finite-dimensional k-vector space V : Since GL(V ) is an open subset of End(V ),
we have

Lie GL(V )
∼→ TI(End V )

∼→ End V

Definition 68. A left-invariant vector field on G is an element D ∈ Derk(k[G], k[G]) such that
the

k[G]
D //

∆
��

k[G]

∆
��

k[G]⊗ k[G]
id⊗D

// k[G]⊗ k[G]

commutes.

For a fixed D, for g ∈ G, define δg := evg ◦D ∈ TgG.

Evaluating ∆ ◦D at (g1, g2) gives δg1g2

Evaluating (id⊗D) ◦∆ at (g1, g2) gives δg2 ◦ `∗g1 = d`g1(δg2)

Hence D ∈ Derk(k[G], k[G]) being left-invariant is equivalent to δg1g2 = d`g1(δg2) for all g1, g2 ∈ G.
Define

DG := vector space of left-invariant vector fields on G.

Theorem 69.
DG → LieG, D 7→ δe = eve ◦D

is a linear isomorphism.

29



Proof. We shall prove that δ 7→ (id ⊗ δ) ◦ ∆ is an inverse morphism. Fix δ ∈ LieG, set D =
(id, δ) ◦∆ : k[G]→ k[G], and check that (id, δ) is a k-derivation k[G]⊗ k[G]→ k[G], where k[G] is
viewed as a k[G]⊗ k[G]-module via id⊗ eve. First, we shall check that D ∈ DG:

D(fh) = (id⊗ δ)(∆(fh))

= (id⊗ δ)(∆(f) ·∆(h))

= (id⊗ eve)(∆f) · (id⊗ δ)(∆h) + (id⊗ eve)(∆h) · (id⊗ δ)(∆f)

= f ·D(h) + h ·D(f).

Next, we show that D is left-invariant:

(id⊗D) ◦∆ = (id⊗ ((id⊗ δ) ◦∆)) ◦∆

= (id⊗ (id⊗ δ)) ◦ (id⊗∆) ◦∆

= (id⊗ (id⊗ δ)) ◦ (∆⊗ id) ◦∆ (“co-associativity”)

= ∆ ◦ (id⊗ δ) ◦∆ (easily checked)

= ∆ ◦D.

Lastly, we show that the maps are inverse:

δ 7→ (id⊗ δ)⊗∆ 7→ eve ◦ (id⊗ δ) ◦∆ = δ ◦ (eve ⊗ id) ◦∆ = δ

D 7→ eve ◦D 7→ (id⊗ eve) ◦ (id⊗D) ◦D = (id⊗ eve) ◦∆ ◦D = D.

Since Homk(k[G], k[G]) is an associative algebra, there is a natural candidate for a Lie bracket on
DG ⊂ Homk(k[G], k[G]): [D1, D2] = D1 ◦D2 −D2 ◦D1. We must check that [DG,DG] ⊂ DG. Let
D1, D2 ∈ DG. Since

[D1, D2](fh) = D1(D2(fh))−D2(D1(fh))

= D1(f ·D2(h) + h ·D2(f))−D2(f ·D1(h) + h ·D1(f))

= D1(f ·D2(h)) +D1(h ·D2(f))−D2(f ·D1(h))−D2(h ·D1(f))

=

(
fD1(D2(h)) +D2(h)D1(f)

)
+

(
hD1(D2(f)) +D2(f)D1(h)

)
−
(
fD2(D1(h)) +D1(h)D2(f)

)
−
(
hD2(D1(f)) +D1(f)D2(h)

)
= f

(
D1(D2(h))− fD2(D1(h))

)
+ h

(
D1(D2(f))− hD2(D1(f))

)
= f · [D1, D2](h) + h · [D1, D2](f)

we have that [D1, D2] is a derivation. Moreover,

(id⊗ [D1, D2]) ◦∆ = (id⊗ (D1 ◦D2)) ◦∆− (id⊗ (D2 ◦D1)) ◦∆

= (id⊗D1) ◦ (id⊗D2) ◦∆− (id⊗D2) ◦ (id⊗D1) ◦∆

= (id⊗D1) ◦∆ ◦D2 − (id⊗D2) ◦∆ ◦D1

= ∆ ◦D1 ◦D2 −∆ ◦D2 ◦D1

= ∆ ◦ [D1, D2]
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and so [D1, D2] is left-invariant. Accordingly, [DG,DG] ⊂ DG, and thus by the above theorem LieG
becomes a Lie algebra.

Remark 70. If p > 0, then DG is also stable under D 7→ Dp (composition with itself p-times).

Proposition 71. If δ1, δ2 ∈ LieG, then [δ1, δ2] : k[G]→ k is given by

[δ1, δ2] = ((δ1, δ2)− (δ2, δ1)) ◦∆

Proof. Let Di = (id⊗ δi) ◦∆ for i = 1, 2. Then

[δ1, δ2] = eve ◦ [D1, D2]

= eve ◦D1 ◦D2 − eve ◦D2 ◦D1

= δ1 ◦ (id⊗ δ2) ◦∆− δ2 ◦ (id⊗ δ1) ◦∆

= (δ1 ⊗ δ2) ◦∆− (δ2 ⊗ δ1) ◦∆

= ((δ1 ⊗ δ2)− (δ2 ⊗ δ1)) ◦∆.

Corollary 72. If φ : G → H is a morphism of algebraic groups, then dφ : LieG → LieH is a
morphism of Lie algebras (i.e., brackets are preserved).

Proof.

dφ([δ1, δ2]) = [δ1, δ2] ◦ φ∗

= (δ1 ⊗ δ2 − δ2 ⊗ δ1) ◦∆ ◦ φ∗, (by the above Prop.)

= (δ1 ⊗ δ2 − δ2 ⊗ δ1) ◦ (φ∗ ⊗ φ∗) ◦∆

= (δ1 ◦ φ∗, δ2 ◦ φ∗) ◦∆− (δ2 ◦ φ∗, δ1 ◦ φ∗) ◦∆

= (dφ(δ1), dφ(δ2)) ◦∆− (dφ(δ2), dφ(δ1)) ◦∆

= [dφ(δ1), dφ(δ2)].

Corollary 73. If G is commutative, then so too is LieG (i.e., [·, ·] = 0).

Example. We have that φ : Lie GLn ∼= Mn(k) is given by φ : δ 7→ (δ(Tij)). Since

[δ1, δ2](Tij) = (δ1, δ2)(∆Tij)− (δ2, δ1)(∆Tij)

=

n∑
l=1

δ1(Til)δ2(Tlj)−
n∑
l=1

δ2(Til)δ1(Tlj)

= (φ(δ1)φ(δ2))ij − (φ(δ2)φ(δ1))ij

Hence,
φ([δ1, δ2]) = φ(δ1)φ(δ2)− φ(δ2)φ(δ1)

and so in identifying Lie GLn with Mn(k), we can also identify the Lie bracket with the usual one
on Mn(k): [A,B] = AB−BA. Similarly, the Lie bracket on Lie GL(V ) ∼= End(V ) can be identified
with the commutator.
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Remark 74. If φ : G→ H is a closed immersion, then φ∗ is surjective, and so dφ : LieG→ LieH
is injective. Hence, if G ↪→ GLn, then the above example determines [·, ·] on LieG.

Examples.
• Lie SLn = trace 0 matrices in Mn(k)
• LieBn = upper-triangular matrices in Mn(k)
• LieUn = upper-triangular matrices in Mn(k) with 1’s along diagonal
• LieDn = diagonal matrices in Mn(k)

Exercise. If G is diagonal, show that LieG ∼= HomZ(X∗(G), k).

3.3 Adjoint representation.

G acts on itself by conjugation: for x ∈ G,

cx : G→ G, g 7→ xgx−1

is a morphism. Ad(x) := dcx : LieG→ LieG is a Lie algebra endomorphism such that

Ad(e) = id, Ad(xy) = Ad(x) ◦Ad(y)

Hence, we have a morphism of groups

Ad : G→ GL(LieG)

Proposition 75. Ad is an algebraic representation of G.

Proof. We must show that

θ : G× LieG→ LieG, (x, δ) 7→ Ad(x)(δ) = dcx(δ) = δ ◦ c∗x

is a morphism of varieties. It is enough to show that λ◦θ is a morphism for all λ ∈ (LieG)∗. Given
such a λ, since (LieG)∗ ∼= m/m2 we must have λ(δ) = δ(f) for some f ∈ m. Accordingly, for any
f ∈ m we must show that

(x, δ) 7→ δ(c∗xf)

is a morphism. Recall from the proof of Proposition 27 that c∗xf =
∑

i hi(x)fi for some fi, hi ∈ k[G],
which implies that

(x, δ) 7→ δ(c∗xf) =
∑
i

hi(x)δ(fi)

is a morphism as x 7→ hi(x) and δ 7→ δ(fi) are morphisms. .

Exercises.
• Show that ad := d(Ad) : LieG→ End(LieG) is

δ1 7→ (δ2 7→ [δ1, δ2])

This is hard, but is easiest to manage in reducing to the case of GLn using an embedding G ↪→ GLn.
• Show that d(det : GLn → GL1) : Mn(k)→ k is the trace map.
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3.4 Some derivatives.

If X1, X2 are varieties with points x1 ∈ X1 and x2 ∈ X2, then the morphisms

X1
ix1 :x 7→(x1,x)

$$

X1 ×X2

π1
::

π2
$$

X1 ×X2

X2

ix2 :x 7→(x,x2)

::

induce inverse isomorphisms Tx1X1⊕Tx2X2 � T(x1,x2)(X1×X2). In particular, for algebraic groups
G1, G2 we have inverse isomorphisms

LieG1 ⊕ LieG2 � Lie (G1 ×G2)

Proposition 76.

(i) d(µ : G×G→ G) = (LieG⊕ LieG
(X,Y )7→X+Y−−−−−−−−→ LieG)

(ii) d(i : G→ G) = (LieG
X 7→−X−−−−−→ LieG)

Proof.
(i). It is enough to show that dµ is the identity on each factor. Since idG can be factored as

G
ie−→ G×G µ−→ G

where ie : x 7→ (e, x) or x 7→ (x, e), we are done.

(ii). Since x 7→ e can be factored G
(id,i)−−−→ G × G µ−→ G. From (i) we have that 0 : LieG → LieG

can factored as

LieG
(id,di)−−−−→ LieG⊕ LieG

+−→ LieG

Remark 77. The open immersion G0 ↪→ G induces an isomorphism LieG0 ∼→ LieG.

Proposition 78 (Derivative of a linear map). If V,W be vector spaces and f : V → W a linear
map (hence a morphism), then, for all v ∈ V , we have the commutative diagram

TvV

o
��

Tv(f)
// Tf(v)W

o
��

V
f

//W

Proof. Exercise.
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Proposition 79. Suppose that σ : G→ GL(V ) is a representation and v ∈ V . Define ov : G→ V
by g 7→ σ(g)v. Then

dov(X) = dσ(X)(v)

in TvV ∼= V , for all X ∈ LieG.

Proof. Factor ov as

G
φ−→ GL(V )× V ψ−→ V

g 7→ (σ(g), v)
(A,w) 7→ Aw

dφ = (dσ, 0) : LieG→ EndV ⊕ V . By Proposition 78, under the identification V ∼= TvV , we have
that the derivative at (e, v) of the first component of ψ, which sends A → Av, is the same map.
The result follows.

Proposition 80. Suppose that ρi : G → GL(Vi) are algebraic representations for i = 1, 2. Then
the derivative of ρ1 ⊗ ρ2 : G→ GL(V1 ⊗ V2) is

d(ρ1 ⊗ ρ2)X = dρ1(X)⊗ id + id⊗ dρ2(X)

(i.e., X(v1 ⊗ v2) = (Xv1)⊗ v2 + v1 ⊗ (Xv2).) Similarly for V1 ⊗ · · · ⊗ Vn, SymnV , ΛnV .

Proof. We have the commutative diagram

ρ1 ⊗ ρ2 : G // GL(V1)×GL(V2)� _

open

��

// GL(V1 ⊗ V2)� _

open

��

End(V1)× End(V2)
φ
// End(V1 ⊗ V2)

where φ : (A,B) 7→ A ⊗ B. (Note that φ being a morphism implies that ρ1 ⊗ ρ2 is.) Computing
dφ component-wise at (1, 1), we get that dφ|End(V1) is the derivative of the linear map End(V1)→
End(V1 ⊗ V2) given by A 7→ A⊗ 1, which is the same map; likewise for dφ|End(V2). Hence,

dφ(A,B) = A⊗ 1 + 1⊗B

and we are done.

Exercise. If ρ : G→ GL(V ) is an algebraic representation, then so is ρ∨ : G→ GL(V ∗), given by
ρ∨(g) = ρ(g−1)∗. (Here, V ∗ is the dual vector space.) Moreover, dρ∨(X) = −dρ(X)∗.

Proposition 81 (Adjoint representation for GL(V )). For g ∈ GL(V ), A ∈ Lie GL(V ) ∼= End(V ),

Ad(g)A = gAg−1

Proof. This follows from Proposition 78 by considering the linear map f : End(V )→ End(V ) given
by A 7→ gAg−1 and noting that GL(V ) is open in End(V ).

Exercise. Deduce that, for GL(V ), ad(A)(B) = AB −BA.
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3.5 Separable morphisms.

Let φ : X → Y be a dominant morphism of irreducible varieties (i.e., φ(X) = Y ). From the induced
maps OY (V )→ OX(φ−1(V )) – note that φ−1(V ) 6= ∅, as φ is dominant – given by f 7→ f ◦φ, we get
a morphism of fields φ∗ : k(Y )→ k(X). That is, k(X) is a finitely-generated field extension of k(Y ).

Remark 82. This field extension has transcendence degree dimX − dimY , and hence is algebraic
if and only if dimX = dimY .

Definition 83. A dominant φ is separable if φ∗ : k(Y )→ k(X) is a separable field extension.

Recall.
• An algebraic field extension E/F being separable means that every α ∈ E has a minimal poly-
nomial without repeated roots.
• A finitely-generated field extension E/F is separable if it is of the form

E

finite separable

F (x1, . . . , xn)

x1, . . . , xn algebraically independent

F

Facts.
• If E′/E and E/F are separable then E′/F is separable.
• If char k = 0, all extensions are separable; in characteristic 0 being dominant is equivalent to
being separable. (As an example, if char k = p > 0, then F (t1/p)/F (t) is never separable.)
• The composition of separable morphisms is separable.

Example. If p > 0, then Gm
p−→ Gm is not separable.

Theorem 84. Let φ : X → Y be a morphism between irreducible varieties. The following are
equivalent:

(i) φ is separable.

(ii) There is a dense open set U ⊂ X such that dφx : TxX → Tφ(x)Y is surjective for all x ∈ U .

(iii) There is an x ∈ X such that X is smooth at x, Y is smooth at φ(x), and dφx is surjective.

Corollary 85. If X,Y are irreducible, smooth varieties, then φ : X → Y

is separable ⇐⇒ dφx is surjective for all x ⇐⇒ dφx is surjective for one x

Remark 86. The corollary applies in particular if X,Y are connected algebraic groups or homo-
geneous spaces.
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3.6 Fibres of morphisms.

Theorem 87. Let φ : X → Y be a dominant morphism between irreducible varieties and let
r := dimX − dimY > 0.

(i) For all y ∈ φ(X), dimφ−1(y) > r.

(ii) There is a nonempty open subset V ⊂ Y such that for all irreducible closed Z ⊂ Y and for
all irreducible components Z ′ ⊂ φ−1(Z) with Z ′ ∩ φ−1(V ) 6= ∅, dimZ ′ = dimZ + r (which
implies that dimφ−1(y) = r for all y ∈ V ). If r = 0, |φ−1(y)| = [k(X) : k(Y )]s for all y ∈ V .

Theorem 88. If φ : X → Y is a dominant morphism between irreducible varieties, then there is a

nonempty open V ⊂ Y such that φ−1(V )
φ−→ V is universally open, i.e., for all varieties Z

φ−1(V )× Z φ×idZ−−−−→ V × Z

is an open map.

Corollary 89. If φ : X → Y is a G-equivariant morphism of homogeneous G-spaces,

(i) For all varieties Z, φ× idZ : X × Z → Y × Z is an open map.

(ii) For all closed, irreducible Z ⊂ Y and for all irreducible components Z ′ ⊂ φ−1(Z), dimZ ′ =
dimZ + r. (In particular, all fibres are equidimensional of dimension r.)

(iii) φ is an isomorphism if and only if φ is bijective and dφx is an isomorphism for one (or,
equivalently, all) x.

(In this statement it’s easy to reduce to the irreducible case.)

Corollary 90. For all G-spaces, dim StabG(x) + dim(Gx) = dimG.

Proof. Apply the above to G→ Gx.

Corollary 91. Let φ : G→ H be a surjective morphism of algebraic groups.

(i) φ is open

(ii) dimG = dimH + dim kerφ

(iii)

φ is an isomorphism ⇐⇒ φ and dφ are bijective ⇐⇒ φ is bijective and separable

Proof. They are homogeneous G-spaces by left-translation, H via φ.
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Definition 92. A sequence of algebraic groups

1→ K
φ−→ G

ψ−→ H → 1

is exact if
(i) it is exact as sequence of abstract groups and
(ii)

0→ LieK
dφ−→ LieG

dψ−→ LieH → 0

is an exact sequence of Lie algebras (i.e., of vector spaces).

Exercise.
(a) Show that φ is a closed immersion if and only if φ is injective and dφ injective.
(b) Suppose that G is connected. Show that ψ is separable if and only if ψ is surjective and dψ
surjective.
(c) Suppose that G is connected. Deduce that the sequence is exact if and only if (i) as above and
(ii′) φ is a closed immersion and ψ is separable.
(d) If the characteristic of k is 0, show that (i) implies (ii). (Hint: reduce to the case when G is
connected.)

Theorem 93 (Weak form of Zariski’s Main Theorem). If φ : X → Y is a morphism between
irreducible varieties such that Y is smooth, and φ is birational (i.e., k(Y ) = k(X)) and bijective,
then φ is an isomorphism.

3.7 Semisimple automorphisms.

Our goal is to show that semisimple conjugacy classes are closed, and to deduce some related
results. The following definition is introduced purely for this purpose.

Definition 94. An automorphism σ : G → G is semisimple if there is a G ↪→ GLn and a
semisimple element s ∈ GLn such that σ(g) = sgs−1 for all g ∈ G.

Example. If s ∈ Gs, then the inner automorphism g 7→ sgs−1 is semisimple.

Example. Here’s an example that is not inner. Consider G = Gn
m
∼= Dn ≤ GLn. Then any

“permutation automorphism” Gn
m → Gn

m is semisimple, at least provided the characteristic is 0 or
p > n.

Definitions 95. Given a semisimple automorphism of G, define

Gσ := {g ∈ G | σ(g) = g}, which is a closed subgroup

gσ := {X ∈ g := LieG| dσ(X) = X}

Let τ : G → G, g 7→ σ(g)g−1. Then Gσ = τ−1(e) and dτ = dσ − id by Proposition 76, which
implies that ker dτ = gσ. Since Gσ ↪→ G

τ−→ G is constant, we have

dτ(LieGσ) = 0 =⇒ LieGσ ⊂ gσ
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Lemma 96.

LieGσ = gσ ⇐⇒ G
τ−→ τ(G) is separable ⇐⇒ dτ : LieG→ Te(τ(G)) is surjective

Proof. τ is a G-map of homogeneous spaces, acting by x ∗ g = σ(x)gx−1 on the codomain. τ(G) is
smooth and is, by Proposition 24, locally closed. Hence, by Theorem 84

τ is separable ⇐⇒ dτ is surjective

⇐⇒ dim gσ = dim ker dτ = dimG− dim τ(G) = dimGσ = dim LieGσ

⇐⇒ gσ = LieGσ

Proposition 97. τ(G) is closed and LieGσ = gσ.

Proof. Without loss of generality G ⊂ GLn is a closed subgroup and σ(g) = sgs−1 for some
semisimple s ∈ GLn. Without loss of generality, s is diagonal with

s = a1Im1 × · · · × anImn

with the ai distinct and n = m1 + · · ·+mn. Then, extending τ, σ to GLn, we have

(GLn)σ = GLm1 × · · · ×GLmn and (gln)σ = Mm1 × · · · ×Mmn

So, Lie (GLn)σ = (gln)σ. Hence

gln
dτ // // Te(τ(GLn))

g

OO

dτ
// Te(τ(G))

OO

So, if X ∈ Te(τ(G)), there is Y ∈ gln such that X = dτ(Y ) = (dσ−1)Y . But, since dσ : A 7→ sAs−1

acts semisimply on gln and preserves g, we can write gln = g⊕V , with V a dσ-stable complement.
Without loss of generality, Y ∈ g, so dτ is surjective and LieGσ = gσ.

Consider S := {x ∈ GLn | (i), (ii), (iii)} where

(i) xGx−1 = G, which implies that Ad(x) preserves g

(ii) m(x) = 0, where m(T ) =
∏
i(T − ai) is the minimal polynomial of s on kn

(iii) Ad(x) has the same characteristic polynomial on g as Ad(s)

Note that s ∈ S,S is closed (check), and if x ∈ S then (ii) implies that x is semisimple. G acts on
S by conjugation. Define Gx, gx as Gσ, gσ were defined. Then

gx = {X ∈ g |Ad(x)X = X}

and

dim gx = multiplicity of eigenvalue 1 in Ad(x) on g
(iii)
= dim gσ

and
dimGx = dimGσ
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by what we proved above. The stabilisers of the G-action on S (conjugation) all Gx, x ∈ S, and
have the same dimension. This implies that the orbits of G on S all have the same dimension,
which further gives that all orbits are closed (Proposition. 24) in S and hence in G. We have

orbit of s = {gsg−1 | g ∈ G} = {gσ(g−1)s | g ∈ G}

and that the map from the orbit to τ(G) given by z 7→ sz−1 is an isomorphism.

Corollary 98. If s ∈ Gs, then clG(s), the conjugacy class of s, is closed and

G→ clG(s), g 7→ gsg−1

is separable.

Remark 99. The conjugacy class of

(
1 1
0 1

)
in B2 is not closed!

Proposition 100. If a torus D is a closed subgroup of a connected G, then LieZG(D) = zg(D),
where

ZG(D) = {g ∈ G | dgd−1 = g ∀ d ∈ D} is the centraliser of D in G, and

zg(D) = {X ∈ g |Ad(d)(X) = X ∀ d ∈ D}

Note: ZG(D) =
⋂
d∈DGd and zg(D) =

⋂
d∈D gd (Gd,gd as above) since, for d ∈ Gs and LieGd = gd

by above.

Proof. Use induction on dimG. When G = 1 this is trivial.
Case 1: If zg(D) = g, then gd = g for all d ∈ D so Gd = G for all d ∈ D, implying that ZG(D) = G.
Case 2: Otherwise, there exists d ∈ D such that gd ( g. Hence, Gd ( G. Also have D ⊂ G0

d, as D
is connected. Note that ZG0

d
(D) = ZG(D) ∩ G0

d has finite index in ZG(D) ∩ Gd = ZG(D) and so
their Lie algebras coincide. By induction,

LieZG(D) = LieZG0
d
(D) = zLieG0

d
(D) = zgd(D) = zg(D) ∩ gd = zg(D)

Proposition 101. If G is connected, nilpotent, then Gs ⊂ ZG (which implies that Gs is a subgroup).

Proof. Pick s ∈ Gs and set σ : g 7→ sgs−1 and τ : g 7→ σ(g)g−1 = [s, g]. Since G is nilpotent, there
is an n > 0 such that τn(g) = [s, [s, . . . , [s, g] · · · ]] = e for al g ∈ G and so

τn = e =⇒ dτn = 0

=⇒ dτ = dσ − 1 is nilpotent, but is also semisimple by above, since dσ is semisimple

=⇒ dτ = 0

=⇒ τ(G) = {e} as G
τ−→ τ(G) is separable

=⇒ sgs−1 = g for all g ∈ G
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4. Quotients.

4.1 Existence and uniqueness as a variety.

Given a closed subgroup H ⊂ G, we want to give the coset space G/H the structure of a variety
such that π : G→ G/H, g 7→ gH is a morphism satisfying a natural universal property.

Proposition 102. There is a G-representation V and a subspace W ⊂ V such that

H = {g ∈ G | gW ⊂W} and h = LieH = {X ∈ g |XW ⊂W}

(We only need the characterisation of h when char k > 0.)

Proof. Let I = IG(H), so that 0 → I → k[G] → k[H] → 0. Since k[G] is noetherian, I is finitely-
generated; say, I = (f1, . . . , fn). Let V ⊃

∑
kfi be a finite-dimensional G-stable subspace of k[G]

(with G acting by right translation). This gives a G-representation ρ : G→ GL(V ). Let W = V ∩I.
If g ∈ H, then ρ(g)I ⊂ I =⇒ ρ(g)W ⊂W . Conversely,

ρ(g)W ⊂W =⇒ ρ(g)(fi) ∈ I ∀ i
=⇒ ρ(g)I ⊂ I, as ρ(g) is a ring morphism k[G]→ k[G]

=⇒ g ∈ H (easy exercise. Note that ρ(g)I = IG(Hg±1))

Moreover, if X ∈ h, then dρ(X)W ⊂W from the above. For the converse dρ(X)W ⊂W =⇒ X ∈ h,
we first need a lemma.

Lemma 103. dρ(X)f = DX(f) ∀X ∈ g, f ∈ V

Proof. We know (Proposition 79) that dρ(X)f = dof (X), identifying V with TfV , where

of : G→ V, g 7→ ρ(g)f

That is, for all f∨ ∈ V ∗
〈dρ(X)f, f∨〉 = 〈dof (X), f∨〉

Extend any f∨ to k[G]∗ arbitrarily. We need to show that

〈dof (X), f∨〉 = 〈DX(f), f∨〉

or, equivalently,

X(o∗f (f∨)) = 〈dof (X), f∨〉 = 〈DX(f), f∨〉 = (1, X)∆f, f∨〉 = (f∨, X)∆f.
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We have

o∗f (f∨) = f∨ ◦ of : g 7→ 〈ρ(g)f, f∨〉 = 〈f( · g), f∨〉 = 〈(id, evg)∆f, f
∨〉 = (f∨, evg)∆f

and so
o∗f (f∨) = (f∨, id)∆f =⇒ X(o∗f (f∨)) = (f∨, X)∆f

Now,

dρ(X)W ⊂W =⇒ DX(fi) ∈ I ∀ i
=⇒ DX(I) ⊂ I (as DX is a derivation)

=⇒ X(I) = 0 easy exercise

which implies that X factors through k[H]:

k[G] // //

X
##

k[H]

X
��

k

It is easy to see that X is a derivation, which means that X ∈ h.

Corollary 104. We can even demand dimW = 1 in Proposition 102 above.

Proof. Let d = dimW , V ′ = ΛdV , and W ′ = ΛdW , which has dimension 1 and is contained in V ′.
We have actions

g(v1 ∧ · · · ∧ vd) = gv1 ∧ · · · ∧ gvd
X(v1 ∧ · · · ∧ vd) = (Xv1 ∧ · · · ∧ vd) + (v1 ∧Xv2 ∧ · · · ∧ vd) + · · ·+ (v1 ∧ · · · ∧Xvd)

We need to show that

gW ′ ⊂W ′ ⇐⇒ gW ⊂W
XW ′ ⊂W ′ ⇐⇒ XW ⊂W

which is just a lemma in linear algebra (see Springer).

Corollary 105. There is a quasiprojective homogeneous space X for G and x ∈ X such that

(i) StabG(x) = H

(ii) If ox : G→ X, g 7→ gx, then

0→ LieH → LieG
dox−−→ TxX → 0

is exact.
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Note that (ii) follows from (i) if char k = 0 (use Corollaries 85 and 89.)
Proof. Take a line W ⊂ V as in the corollary above. Let x = [W ] ∈ PV and let X = Gx ⊂ PV .
X is a subvariety and is a quasiprojective homogeneous space. Then (i) is clear.

Exercise. The natural map φ : V − {0} → PV induces an isomorphism

V/x ∼= TvV/x ∼= Tx(PV )

for all x ∈ PV and v ∈ φ−1(x). (Hint:

k×
λ 7→λv−−−−→ V − {0} φ−→ PV

is constant. Use an affine chart in PV to prove that dφ is surjective.)

Claim. ker(dox) = h (then (ii) follows by dimension considerations.)
Fix v ∈ φ−1(x).

φ ◦ ox :G
g 7→(ρ(g),v)−−−−−−−→ GL(V )× (V − {0}) (ρ(g),v) 7→ρ(g)v−−−−−−−−−→ V − {0} φ:ρ(g)v 7→[ρ(g)v]−−−−−−−−−−→ PV

dφ ◦ dox : g
X 7→(dρ(X),0)−−−−−−−−→ End(V )⊕ V (dρ(X),0) 7→dρ(X)v−−−−−−−−−−−−→ V

dφ:dρ(X)v 7→[dρ(X)v]−−−−−−−−−−−−−→ V/x.

We have
[dφ(X)v] = 0 ⇐⇒ XW ⊂W ⇐⇒ X ∈ h

Definition 106. If H ⊂ G is a closed subgroup (not necessarily normal). A quotient of G by H
is a variety G/H together with a morphism π : G→ G/H such that
(i) π is constant on H-cosets, i.e., π(g) = π(gh) for all g ∈ G, h ∈ H, and
(ii) if G → X is a morphism that is constant on H-cosets, then there exists a unique morphism
G/H → X such that

G
π //

��

G/H

||

X

commutes. Hence, if a quotient exists, it is unique up to unique isomorphism.

Theorem 107. A quotient of G by H exists; it is quasiprojective. Moreover,

(i) π : G→ G/H is surjective whose fibers are the H-cosets.

(ii) G/H is a homogeneous G-space under

G×G/H → G/H, (g, π(γ)) 7→ π(gγ)

Proof. Let G/H = {cosets gH} as a set with natural surjection π : G → G/H and give it the
quotient topology (so that G/H is the quotient in the category of topological spaces). π is open.
For U ⊂ G/H let OG/H(U) := {f : U → k | f ◦ π ∈ OG(π−1(U))}. Easy check: OG/H is a sheaf of
k-valued functions on G/H and so (G/H,OG/H) is a ringed space.
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If φ : G→ X is a morphism constant on H-cosets, then we get

G
π //

φ
��

G/H

∃!
||

X

in the category of ringed spaces .

By the second corollary 105 to Proposition 102 there is a quasiprojective homogeneous space X of
G and x ∈ X such that

(i) StabG(x) = H

(ii) If ox : G→ X, g 7→ gx, then

0→ LieH → LieG
dox−−→ TxX → 0

is exact.

Since ox is constant on H-cosets, we get a map ψ : G/H → X of ringed spaces (from the above
universal property). ψ is necessarily given by gH 7→ gx and is bijective. If we show that ψ is an
isomorphism of ringed spaces and that (G/H,OG/H) is a variety, then the theorem follows.

ψ is a homeomorphism:
We need only show that ψ is open. If U ⊂ G/H is open then

ψ(U) = ψ(π(π−1(U))) = φ(π−1(U))

is open, as φ is an open map (by Corollary 89).

ψ gives an isomorphism of sheaves:
We must show that for V ⊂ X open

OX(V )→ OG/H(ψ−1(V ))

is an isomorphism of rings. Clearly it is injective. To get surjectivity we need that for all f : V → k

f ◦ φ : φ−1(V )→ k regular =⇒ f regular

Since
G

π //

φ
��

G/H

ψ
||

X

and ψ is a homeomorphism, we need only focus on (X,φ). A lemma:

Lemma 108. Let X,Y be irreducible varieties and f : X → Y a map of sets. If f is a morphism,
then the graph Γf ⊂ X × Y is closed. The converse is true if X is smooth if Γf is irreducible, and
Γf → X is separable.
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Proof.

(⇒:) If f is a morphism, then Γf = θ−1(∆Y ) is closed, where

θ : X × Y → Y × Y, (x, y) 7→ (f(x), y).

(⇐:) We have
Γf
� � //

η

��

X × Y

{{

X

with Γf ↪→ X × Y the closed immersion.

η bijective
87

=⇒ dim Γf = dimX and 1 = [k(Γf ) : k(X)]s = [k(Γf ) : k(X)]

as η is separable. Hence η is birational and bijective with X smooth, meaning that η is an isomor-
phism by Theorem 93 and

f : X
η−1

−−→ Γf → Y

is a morphism.

Now, for simplicity, assume that G is connected, which implies that X,V, φ−1(V ) are irreducible.
(For the general case, see Springer.) Suppose that f ◦ φ is regular. It follows from the lemma that
Γf◦φ ⊂ φ−1(V ) × A1 is closed, surjecting onto Γf via φ × id. By Corollary 89 , φ : G → X is
“universally open” and so

V ×A1 − Γf = (φ× id)(φ−1(V )×A1 − Γf◦φ)

is open: Γf is closed. (The point is that Γf◦φ is a union of fibers of φ× id.)

Also, Γf◦φ ∼= φ−1(V ) is irreducible, implying that Γf is irreducible, and

Γf◦φ

����

pr1

∼ // φ−1(V )

����

Γf pr1
// V

and
dφ surjective =⇒ d(pr1) surjective =⇒ Γf → V separable and V smooth.

By Lemma 108, f is a morphism.

Corollary 109. (i) dim(G/H) = dimG− dimH

(ii)

0→ LieH → LieG
dπ−→ Te(G/H)→ 0

is exact.
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Proof.
(i): G/H is a homogeneous with stabilisers equal to H.
(ii): Implied by Corollary 105.

Lemma 110. Let H1 ⊂ G1, H2 ⊂ G2 be closed subgroups. The natural map

(G1 ×G2)/(H1 ×H2)→ G1/H1 ×G2/H2

is an isomorphism.

Proof. This is a bijective map of homogeneous G1×G2 spaces, which is bijective on tangent spaces
by the above. The rest follows from Corollary 91.

4.2 Quotient algebraic groups.

Proposition 111. Suppose that N E G is a closed normal subgroup. Then G/N is an algebraic
group that is affine (and π : G→ G/N is a morphism of algebraic groups).

Proof. Inversion G/N → G/N is a morphism, along with multiplication G/N × G/N → G/N by
Lemma 110, which gives that G/N is an algebraic group.

By Corollary 104, there exists a G-representation ρ : G → GL(V ) and a line L ⊂ V such that
N = StabG(L) and LieN = Stabg(L). For χ ∈ X∗(N) = Hom(N,Gm), let Vχ be the χ-eigenspace
of V . (Note that L ⊂ Vχ for some χ.) Let V ′ =

∑
χ∈X∗(N) Vχ =

⊕
χ Vχ (by linear independence of

characters). As N E G, G permutes the Vχ. Define

W = {f ∈ End(V ) | f(Vχ) ⊂ Vχ ∀ χ} ⊂ End(V ).

Let σ : G→ GL(W ) by
σ(g)f := ρ(g)fρ(g)−1

which is an algebraic representation.

Claim. σ induces a closed immersion G/N ↪→ GL(W ).
It is enough to show that kerσ = N and ker(dσ) = LieN .

g ∈ kerσ ⇐⇒ ρ(g)f = fρ(g)

⇐⇒ ρ(g) acts as a scalar on each Vχ

=⇒ ρ(g)L = L as L ⊂ Vχ for some χ

=⇒ g ∈ N

The converse is trivial: kerσ = N .

By Proposition 79, φf : G→W , g 7→ σ(g)f has derivative

dφf : g→W, X 7→ dσ(X)f.
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Check that dσ(X)f = dρ(X)f − fdρ(X). We have

dσ(X) = 0 ⇐⇒ dρ(X)f = fdρ(X) for all f ∈W
⇐⇒ dρ(X) acts as a scalar on each Vχ

=⇒ X ∈ LieN (as above).

Corollary 112. Suppose φ : G → H is a morphism of algebraic groups with φ(N) = 1, N E G
closed. Then we have a unique factorisation in the category of algebraic groups,

G //

φ
!!

G/N

��

H

In particular, we get that G/ kerφ→ imφ is bijective and is an isomorphism when in characteristic
0.

(Note that in characteristic p, Gm
p−→ Gm is bijective and not an isomorphism.)

Remark 113.
1→ N → G→ G/N → 1

is exact by Corollary 109.

Exercise. If N ⊂ H ⊂ G are closed subgroups with N E G, then the natural map H/N → G/N is
a closed immersion (so we can think of H/N as a closed subgroup of G/N) and we have a canonical
isomorphism (G/N)/(H/N)

∼→ G/H of homogeneous G-spaces.

Exercise. Assume that char k = 0. Suppose N,H ⊂ G are closed subgroups such that H nor-
malises N . Show that HN is a closed subgroup of G and that we have a canonical isomorphism
HN/N ∼= H/(H ∩N) of algebraic groups. Find a counterexample when char k > 0.

Exercise. Suppose H is a closed subgroup of an algebraic group G. Show that if both H and G/H
are connected, then G is connected. (Use, for example, Exercise 5.5.9(1) in Springer.) Variant:
Show that if ϕ : G → H is a homomorphism such that kerϕ and imϕ are connected, then G is
connected. (Hint: show that ϕ(G0) = imϕ.)

Exercise. Assume that char k = 0. Suppose φ : G → H is a surjective morphism of algebraic
groups. If H1 ⊂ H2 ⊂ H are closed subgroups, show that the map φ induces a canonical isomor-
phism φ−1(H2)/φ−1(H1)

∼→ H2/H1. Find a counterexample when char k > 0.

Example. The group PGL2:
Let Z = {

(
x
x

)
| x ∈ Gm}. GL2/Z is affine and the composition

SL2 ↪→ GL2 � GL2/Z
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is surjective, inducing the inclusion of Hopf algebras

k[GL2]Z = k[GL2/Z] ↪→ k[SL2].

Check that the image is generated by the elements
TiTj
det , 1 ≤ i, j ≤ 4. (See Springer Exercise

2.1.5(3).)
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5. Parabolic and Borel subgroups.

5.1 Complete varieties.

Recall: A variety X is complete if for all varieties Z, X × Z pr2−−→ Z is a closed map. In the
category of locally compact Hausdorff topological spaces, the analogous property is equivalent to
compactness.

Proposition 114. Let X be complete.

(i) Y ⊂ X closed =⇒ Y complete.

(ii) Y complete =⇒ X × Y complete

(iii) φ : X → Y morphisms =⇒ φ(X) ⊂ Y is closed and complete, which implies that if X ⊂ Z
is a subvariety, then X is closed in Z

(iv) X irreducible =⇒ OX(X) = k

(v) X affine =⇒ X finite

Proof. An exercise (or one can look in Springer).

Theorem 115. X projective =⇒ X complete

Note: The converse is not true.

Lemma 116. Let X,Y be homogeneous G-spaces with φ : X → Y a bijective G-map. Then X is
complete ⇐⇒ Y is complete.

Note that such a map is an isomorphism if the characteristic of k is 0.

Proof. For all varieties Z, then projection X × Z → Z can be factored as

X × Z φ×id−−−→ Y × Z pr2−−→ Z

φ × id is bijective and open (by Corollary 89) and is thus a homeomorphism: Y being complete
implies that in X. Applying the same reasoning to φ−1 : Y → X gives the converse.

Definition 117. A closed subgroup P ⊂ G is parabolic if G/P is complete.
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Remark 118. For a closed subgroup P ⊂ G, G/P is quasi-projective by Theorem 107 and so

G/P projective ⇐⇒ G/P complete ⇐⇒ P parabolic.

The implication of G/P being complete implying that G/P being projective follows from Proposition
114 (iii) applying to the embedding of G/P into some projective space.

Proposition 119. If Q ⊂ P and P ⊂ G are parabolic, then Q ⊂ G is parabolic.

Proof. For all varieties Z we need to show that G/Q × Z pr2−−→ Z is closed. Fix a closed subset
C ⊂ G/Q×Z. Letting π : G→ G/P denote the natural projection, setD = (π×idZ)−1(C) ⊂ G×Z,
which is closed. For all q ∈ Q, note that (g, z) ∈ D =⇒ (gq, z) ∈ D. It is enough to show that
pr2(D) ⊂ Z is closed.

Let
θ : P ×G× Z → G× Z, (p, g, z) 7→ (gp, z)

Then θ−1(D) is closed for all q ∈ Q

(∗) (p, g, z) ∈ θ−1(D) =⇒ (pq, g, z) ∈ θ−1(D)

Let α : P ×G× Z → P/Q×G× Z be the natural map.

P ×G× Z α //

pr23
((

P/Q×G× Z
pr23
��

G× Z

By Corollary 89, α is open. By passing to complements, (∗) implies that α(θ−1(D)) is closed. P/Q
being complete implies that

pr23(θ−1(D)) = {(gp−1, z) | (g, z) ∈ D, p ∈ P}

is closed. Now,

G× Z β
//

pr2
&&

G/P × Z
pr2
��

G× Z

Similarly β is open, and so β(pr23(θ−1(D))) is closed. G/P being complete implies

pr2(β(pr23(θ−1(D)))) = pr2(pr23(θ−1(D))) = pr2(D) = pr2(C)

is closed.

5.2 Borel subgroups.

Theorem 120 (Borel’s fixed point theorem). Let G be a connected, solvable algebraic group and
X a (nonempty) complete G-space. Then X has a fixed point.
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Proof. We show this by inducting on the dimension of G. When dimG = 0 =⇒ G = {e} the
theorem trivially holds. Now, let dimG > 0 and suppose that the theorem holds for dimensions
less than dimG. Let N = [G,G] E G, which is a connected normal subgroup by Proposition 19
and is a proper subgroup as G is solvable. Since N is connected and solvable, by induction

XN = {x ∈ X | nx = x ∀n ∈ N} 6= ∅

Since XN ⊂ X is closed (both topologically and under the action of G, as N is normal), by
Proposition 114, XN is complete; so, without loss of generality suppose that N acts trivially on X.
Pick a closed orbit Gx ⊂ X, which exists by Proposition 24 and is complete. Since G/StabG(x)→
Gx is a bijective map of homogeneous G-spaces, G/StabG(x) is complete by Proposition 116.

N ⊂ StabG(x) =⇒ StabG(x) is normal

=⇒ G/StabG(x) is affine and complete (and connected)

=⇒ G/StabG(x) is a point, by Proposition 114

=⇒ x ∈ XG

Proposition 121 (Lie-Kolchin). Suppose that G is connected and solvable. If φ : G→ GLn, then
there exists γ ∈ GLn such that γ(imφ)γ−1 ⊂ Bn.

Proof. Induct on n. When n = 1, then theorem trivially holds. Let n > 1 and suppose that it holds
for all m < n. Write GLn = GL(V ) for an n-dimensional vector space V . G acts on PV via φ.
By Borel’s fixed point theorem, there exists v1 ∈ V such that G stabilises the line V1 := kv1 ⊂ V ,
implying that G acts on V/V1. By induction there exists a flag

0 = V1/V1 ( V2/V1 ( · · · ( V/V1

stabilised by G; hence G stabilises the flag

0 ( V1 ( · · · ( Vn = V

Remark 122. Both of the above results need G connected. It’s easy to find counterexamples with
G finite otherwise.

Definition 123. A Borel subgroup of G is a maximal connected solvable closed subgroup B of G.

Remarks 124.
• Any G has a Borel subgroup since if B1 ( B2 is irreducible =⇒ dimB1 < dimB2.
• Bn ⊂ GLn is a Borel by Lie-Kolchin.

Theorem 125.

(i) A closed subgroup P ⊂ G is parabolic ⇐⇒ P contains a Borel subgroup.

(ii) Any two Borel subgroups are conjugate.
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In particular, a Borel subgroup is precisely a minimal – or, equivalently, a connected, solvable –
parabolic.

Remark 126. We will soon see that any parabolic subgroup is connected (Theorem 152).

Proof. For simplicity, assume that G is connected.
(i) (⇒): Suppose that B is a Borel and P is parabolic. B acts on G/P . By the Borel fixed point
theorem, there is a coset gP such that Bg ⊂ gP =⇒ g−1Bg ⊂ P . g−1Bg is Borel.

(i) (⇐): Let B be a Borel. We first show that B is parabolic, inducting on dimG. Pick a closed
immersion G ↪→ GL(V ). G acts on PV . Let Gx be a closed – hence complete – orbit. Since
G/StabG(x) → Gx is a bijective map of homogeneous spaces, P := StabG(x) is parabolic. By
above, B ⊂ gPg−1, for some g ∈ G. Without loss of generality, B ⊂ P . If P 6= G, then B is
Borel in P . Since P ⊂ G is parabolic and B ⊂ P is parabolic by induction, it follows that B ⊂ G
is parabolic, by Proposition 119. Suppose P = G. G stabilises some line V1 ⊂ V , which gives a
morphism G→ GL(V/V1). By induction on dimV , we either obtain a proper parabolic subgroup,
in which case we are done by the above, or G stabilises some flag 0 ⊂ V1 ⊂ · · ·Vn = V , giving that

G ↪→ Bn =⇒ G is solvable =⇒ G = B is parabolic

Now, suppose that P is a closed subgroup containing a Borel B. Then G/B � G/P . Since G/B
is complete, by Proposition 114 we get that G/P is complete =⇒ P is parabolic.

(ii). Let B1, B2 be Borel subgroups, which are parabolic by (i). By (i), there is g ∈ G such that
gB1g

−1 ⊂ B2 =⇒ dimB1 6 dimB2. Similarly,

dimB2 6 dimB1 =⇒ dimB1 = dimB2 =⇒ gB1g
−1 = B2

Corollary 127. Let φ : G→ G′ be a surjective morphism of algebraic groups.

(i) If B ⊂ G is Borel, then φ(B) ⊂ G′ is Borel.

(ii) If P ⊂ G is parabolic, then φ(P ) ⊂ G′ is parabolic.

Proof. It is enough to prove (i). Since B � φ(B), φ(B) is connected and solvable. Since G/B is
complete and G/B � G′/φ(B) it follows that G′/φ(B) is complete and φ(B) is parabolic. Now,
φ(B) is connected, solvable, and contains a Borel: φ(B) is Borel by the maximality in the definition
of a Borel subgroup.

Corollary 128. If G is connected and B ⊂ G a Borel, then Z0
G ⊂ ZB ⊂ ZG.

Remark 129. We will soon see that ZB = ZG (see Prop. 149).

Proof.

Z0
G connected, solvable =⇒ Z0

G ⊂ gBg−1, for some g ∈ G
=⇒ Z0

G = g−1Z0
Gg ⊂ B

=⇒ Z0
G ⊂ ZB
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Now, fix b ∈ ZB and define the morphism φ : G/B → G of varieties by gB 7→ gbg−1. φ(G/B) is
complete and closed – hence affine – and irreducible, hence a point:

φ(G/B) = {b} =⇒ ∀ g ∈ G, gbg−1 = b =⇒ b ∈ ZG =⇒ ZB ⊂ ZG

Proposition 130. Let G be a connected group and B ⊂ G a Borel. If B is nilpotent, then G is
solvable; that is, B nilpotent =⇒ B = G.

Proof. If B = 1, then G = G/B is complete, connected, and affine, hence G/B = 1, so G = B.
If B 6= 1: B being nilpotent means that

B ) CB ) · · · ) CnB = 1

for some n > 0 (where CiB = [B, Ci−1B] is connected and closed). Let N = Cn−1B, so that

1 = [B,N ] =⇒ N ⊂ ZB ⊂ ZG (above corollary) =⇒ N E G

Hence we have the morphism B/N ↪→ G/N of algebraic groups, which is a closed immersion by the
exercise after Theorems 87, 88. Also, B/N is a Borel of G/N , by the corollary above, and B/N is
nilpotent.

Inducting on dimG, we get that G/N is solvable, which implies that G is solvable.

5.3 Structure of solvable groups.

Proposition 131. Let G be connected and nilpotent. Then Gs, Gu are (connected) closed normal

subgroups and Gs ×Gu
mult.−−−→ G is an isomorphism of algebraic groups. Moreover, Gs is a central

torus.

Remark 132. This generalises Proposition 37 from the commutative case (at least when G is
connected).

Proof. Without loss of generality, G ⊂ GL(V ) is a closed subgroup. By Proposition 101 Gs ⊂ ZG.
The eigenspaces of elements Gs coincide; let V =

⊕
λ:Gs→k× Vλ be a simultaneous eigenspace de-

composition. Since Gs is central, G preserves each Vλ. By Lie-Kolchin (Proposition 121), we can
choose a basis for each Vλ such that the G-action is upper-triangular. Therefore, G ⊂ Bn, and
Gs = G ∩ Dn, Gu = G ∩ Un are closed subgroups, Gu being normal. We can now show that
Gs × Gu

∼→ G as in the proof of Proposition 37. Moreover, Gs is a torus, being connected and
commutative.

Proposition 133. Let G be connected and solvable.

(i) [G,G] is a connected, normal closed subgroup and is unipotent.

(ii) Gu is a connected, normal closed subgroup and G/Gu is a torus.
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Proof.
(i).

Lie-Kolchin =⇒ G ↪→ Bn

=⇒ [G,G] ↪→ [Bn, Bn] ⊂ Un
=⇒ [G,G] unipotent

We already know that it is connected, closed, and normal.

(ii). Gu = G ∩ Un is a closed subgroup. Gu ⊃ [G,G] implies that Gu E G and that G/Gu is
commutative. For [g] ∈ G/Gu, [g] = [gs] = [g]s: all elements of G/Gu are semisimple. Since G/Gu
is furthermore connected, it follows that G/Gu is a torus. It now remains to show that Gu is
connected.

1→ Gu/[G,G]→ G/[G,G]→ G/Gu → 1

is exact (by the exercise on exact sequences). By Proposition 37,

G/[G,G] ∼= (G/[G,G])s × (G/[G,G])u

Hence (G/[G,G])u = Gu/[G,G], which is connected by the above. Since [G,G] is also connected,
it follows from Springer 5.5.9(1) (exercise) that Gu is connected.

Lemma 134. Let G be connected and solvable with Gu 6= 1. Then there exists a closed subgroup
N ⊂ ZGu such that N ∼= Ga and N E G.

Proof. Since Gu is unipotent, it is nilpotent. Let n > 0 be such that

Gu ) CGu ) · · · ) CnGu = 1.

The CiGu are connected closed subgroups and are normal as Gu is normal. Let N = Cn−1Gu. Then

1 = [Gu, N ] =⇒ N ⊂ ZGu ,

in particular N is commutative. If char k = p > 0, let N ↪→ Um, for some m, and let r be minimal
such that pr > m so that Npr = 1. Then (perhaps for a different r > 0),

N ) Np ) · · · ) Npr = 1.

The Npi are connected, closed, and normal in G. Replace N by Npr−1
. Then WLOG N is a

connected elementary unipotent group and hence is isomorphic to Gr
a for some r, by Corollary 59.

G act on N by conjugation, with Gu acting trivially. This induces an action G/Gu ×N → N (use
Lemma 110). G/Gu acts on k[N ] in a locally algebraic manner, preserving the non-zero subspace
Hom(N,Ga) = A(N). Since G/Gu is a torus, there is a nonzero f ∈ Hom(N,Ga) that is a simul-
taneous eigenvector. So, (ker f)0 ⊂ N has dimension r−1 and is still normal in G. Induct on r.

Definitions 135. A maximal torus of G is a closed subgroup that is a torus and is a maximal such
subgroup with respect to inclusion; they exist by dimension considerations. A temporary definition:
a torus T of a connected solvable group is Maximal (versus maximal) if dimT = dim(G/Gu).
(Recall that G/Gu is a torus.) It is easy to see that Maximal =⇒ maximal. We shall soon see
that the converse is true as well, after a corollary to the following theorem (so that we can then
dispense with the capital M):
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Theorem 136. Let G be connected and solvable.

(i) Any semisimple element lies in a Maximal torus. (In particular, Maximal tori exist.)

(ii) ZG(s) is connected for all semisimple s.

(iii) Any two Maximal tori are conjugate in G.

(iv) If T is a Maximal torus, then G ∼= Gu o T (i.e., Gu E G and Gu × T
mult.−−−→ G is an

isomorphism of varieties).

Proof.
(iv): Let T be Maximal and consider φ : T → G/Gu. Since kerφ = T ∩Gu = 1 (Jordan decompo-
sition), we have that

dimφ(T ) = dimT − dim kerφ = dimT = dimG/Gu =⇒ φ(T ) = G/Gu :

φ is surjective and so G = TGu. Thus multiplication T×Gu → G is a bijective map of homogeneous
T × Gu-spaces. To see that it is an isomorphism, (if p > 0) we need an isomorphism – just an
injection by dimension considerations – on Lie algebras, which is equivalent to LieT ∩ LieGu = 0,
as is to be shown.

Now, pick a closed immersion G ↪→ GL(V ). Picking a basis for V such that Gu ⊂ Un gives that

LieGu ⊂ LieUn =

0 ∗ ∗
. . . ∗

0


consists of nilpotent elements. Picking a basis for V such that T ⊂ Dn gives that

LieT ⊂ LieDn = diag(∗, . . . , ∗)

consist of semisimple elements. Thus, LieT ∩ LieGu = 0.

(i)–(iii):
If Gu = 1, then G is a torus and there is nothing to show. Suppose that dimGu > 0.

Case 1. dimGu = 1:
Gu is connected, unipotent and so Gu ∼= Ga by Theorem 60. Let φ : Ga → Gu be an isomorphism.
G acts on Gu by conjugation with Gu acting trivially. We have

Aut Gu ∼= Aut Ga
∼= Gm (exercise).

Hence
gφ(x)g−1 = φ(α(g)x)

for all g ∈ G, x ∈ Ga, for some character α : G/Gu → Gm.

α = 1: Gu ⊂ ZG.

[G,G] ⊂ Gu (Proposition 133) =⇒ [G, [G,G]] = 1, so G is nilpotent

=⇒ G ∼= Gu ×Gs (Proposition 131)
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and so G is commutative and Gs is the unique maximal torus. (i)–(iii) are immediate.

α 6= 1: Given s ∈ Gs, let Z = ZG(s).

G/Gu commutative =⇒ clG(s) maps to [s] ∈ G/Gu
=⇒ clG(s) ⊂ sGu
=⇒ dim clG(s) 6 1

=⇒ dimZ = dimG− dim clG(s) > dimG− 1

α(s) 6= 1: For all x 6= 0

sφ(x)s−1 = φ(α(s)x) 6= φ(x)

which implies that Z ∩Gu = 1, further giving dimZ = dimG− 1 and

Zu = 1 =⇒ Z0 is a torus – which is Maximal – by Proposition 133 (it is connected, solvable and Z0
u = 1)

=⇒ G = Z0Gu, by (iv)

If z ∈ Z, then z = z0u for some z0 ∈ Z0 and u ∈ Gu. But

u = z−1
0 z ∈ Z ∩Gu = 1 =⇒ z = z0 ∈ Z0.

Therefore, Z = Z0, giving (iii), and s ∈ Z, giving (i).

α(s) = 1: For all x 6= 0

sφ(x)s−1 = φ(α(s)x) = φ(x)

and so Gu ⊂ Z. By the Jordan decomposition, since s commutes with Gu, sGu ∩Gs = {s}, which
means that

clG(s) = {s} =⇒ s ∈ ZG =⇒ Z = G.

(ii) follows.

Note that since α 6= 1 there is g = gsgu such that α(gs) = α(g) 6= 1 and so Z(gs) is a Maximal
torus by the previous case. Hence, since ZG(s) = G, we have s ∈ ZG(gs): (i) follows.

Now it remains to prove (iii) in the general case in which α 6= 1. Let s be such that T, T ′ be
Maximal tori. With the identification T

∼→ G/Gu (see (iv)), let s ∈ T be such that α(s) 6= 1. Then
ZG(s) is Maximal (by the above) and

T ⊂ ZG(s) =⇒ T = ZG(s) by dimension considerations.

Likewise, with the identification T ′
∼→ G/Gu, pick s′ ∈ T ′ with [s] = [s′] in G/Gu so that T ′ =

ZG(s′). s′ = su for some u = Gu. The conjugacy class of s (resp. s′) – which has dimension 1 by
the above – is contained in sGu = s′Gu, which is irreducible of dimension 1:

clG(s) = sGu = s′Gu = clG(s′)

since the conjugacy classes are closed (Corollary 98). Therefore, s′ is conjugate to s and thus T, T ′

are conjugate.
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Case 2. dimGu > 1: Induct on the dimension of G.
Lemma 134 implies that there exists a closed, normal subgroup N ⊂ ZGu isomorphic to Ga. Set
G = G/N and Gu = Gu/N , so G/Gu ∼= G/Gu. Let π : G� G be the natural surjection.

(i): If s ∈ Gs, define s = π(s) ∈ Gs := π(Gs). By induction, there is a Maximal torus T in G

containing s. Let H = π−1(T ), which is connected since N and T are connected (exercise, see home-
work 3). Also, Hu = N (consider the map H → T with kernel N) has dimension 1. Case 1 implies
that there is a torus T 3 s in H (Maximal in H) of dimension dimH/Hu = dimT = dimG/Gu;
hence, T is Maximal in G, containing s.

(iii): Let T, T ′ be Maximal tori. Then π(T ) = π(T ′) are Maximal tori in G and by induction
are conjugate: there is g ∈ G such that

π(T ) = π(gT ′g−1) =⇒ T, gT ′g−1 ∈ π−1(π(T )) =: H.

As above Hu is 1-dimensional and so T, gT ′g−1 – being Maximal tori in H – are conjugate in H
and hence in G.

(ii): Again, for s ∈ Gs, set s = π(s). ZG(s) is connected by induction. H := π−1(ZG(s)) is
connected since N and ZG(s) are connected (exercise, see homework 3). Since π(ZG(s)) ⊂ ZG(s),
we have ZG(s) = ZH(s). If H 6= G, ZH(s) is connected by induction and we are done. If H = G,
then ZG(s) = G. Hence,

clG(s) = {s} =⇒ clG(s) ⊂ π−1(s) = sN

and so the conjugacy class of s (recall that it is closed!) has dimension at most 1. We can now
proceed as in Case 1 to conclude. (Sketch: fix an isomorphism φ : N → Gu. There is a β ∈ Gm

such that sφ(x)s−1 = φ(βx) for all x ∈ Ga. If β 6= 1 we deduce Z ∩N = 1, so dimZ = dimG− 1
and G = Z0N . We deduce Z = Z0 as above. If β = 1, then N ≤ Z, so sN ∩ Gs = {s}, which
implies clG(s) = {s} and hence Z = G.)

Remark 137. (i), (iii) above carry over to all connected G, as we shall see soon. However, (ii)
can fail in general. (For example, take G = PGL2 in characteristic 6= 2 and s = [diag(1,−1)].)

Example. Dn is a maximal torus of Bn and Bn ∼= Un oDn.

Example. If G is connected nilpotent it is clear by Proposition 131 that Gs is the unique maximal
torus and the unique Maximal torus.

Lemma 138. If φ : H → G is an injective homomorphism, then dimH 6 dimG.

Proof. Since dim kerφ = 0, dimH = dimφ(H) 6 dimG.

Proposition 139. Let G be connected and solvable with H ⊂ G a closed diagonalisable subgroup.

(i) H is contained in a Maximal torus.

(ii) ZG(H) is connected.

(iii) ZG(H) = NG(H)
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Proof. We shall induct on dimG.

If H ⊂ ZG: Let T be a Maximal torus. For h ∈ H, for some g ∈ G,

h ∈ gTg−1 =⇒ h = g−1hg ∈ T =⇒ H ⊂ T

Also, ZG(H) = NG(H) = G.

If H 6⊂ ZG: let s ∈ H −ZG. Then H ⊂ Z := ZG(s) 6= G and so Z is connected by induction. Also
by induction, s ∈ T for some Maximal torus T ; hence T ⊂ Z. We have injective morphisms

T → Z/Zu → G/Gu =⇒ dimT 6 dim(Z/Zu) 6 dim(G/Gu)

But T is maximal, and so all of the dimensions must coincide: T is a Maximal torus of Z. By
induction H ⊂ gTg−1 for some g ∈ Z, implying (i). Also, ZG(H) = ZZ(H) is connected by
induction, giving (ii). For (iii), if n ∈ NG(H), h ∈ H, then

[n, h] ∈ H ∩ [G,G] ⊂ H ∩Gu = 1 =⇒ n ∈ ZG(H) =⇒ NG(H) ⊂ ZG(H)

Corollary 140. Let G be connected and solvable, and let T ⊂ G be a torus. Then

T is maximal ⇐⇒ T is Maximal

Proof. If T is Maximal and T ⊂ T ′ for some torus T ′, then T → T ′ → G/Gu are injective
morphisms, giving

dim(G/Gu) = dimT 6 dimT ′ 6 dim(G/Gu)

Hence, T = T ′ and T is maximal. If T is not Maximal, then T ⊂ T ′ for some Maximal T ′ by the
above proposition, so T is not maximal.

5.4 Cartan subgroups.

Remark 141. From now on, G denotes a connected algebraic group.

Theorem 142. Any two maximal tori in G are conjugate.

Proof. Let T, T ′ be maximal. Since both are connected and solvable they are each contained in
Borels: T ⊂ B, T ′ ⊂ B′. There is a g ∈ G such that gBg−1 = B′. gTg−1 and T ′ are two maximal
tori in B and so, by Proposition 136, for some b ∈ B, bgTg−1b−1 = T ′.

Corollary 143. A maximal torus in a Borel subgroup of G is a maximal torus in G.

Proof. Let B be a Borel subgroup. By the previous proof, any maximal torus of G is conjugate to
a maximal torus of B. . .
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Definition 144. A Cartan subgroup of G is ZG(T )0, for a maximal torus T . All Cartan
subgroups are conjugate. (We will see in Proposition 150 that ZG(T ) is connected.)

Examples.
•. G = GLn, T = Dn, ZG(T ) = T = Dn

•. If G is nilpotent, then the unique maximal torus Gs is central, so G is the unique Cartan sub-
group.

Proposition 145. Let T ⊂ G be a maximal torus. C := ZG(T )0 is nilpotent and T is its (unique)
maximal torus.

Proof. T ⊂ C and so T is a maximal torus of C. Moreover, T ⊂ ZC . Now T lies in a Borel
subgroup B of C and T ⊂ ZB, so by Theorem 136 we have B = T × Bu, so B is nilpotent. By
Proposition 130, C = B, so C is nilpotent. Finally T is the unique maximal torus of C by Propo-
sition 131.

Lemma 146. Let S ⊂ G be a torus. There exists s ∈ S such that ZG(S) = ZG(s).

Proof. Let G ↪→ GLn be a closed immersion. Since S is a collection of commuting, diagonalisable
elements, without loss of generality, S ↪→ Dn. It is enough to show that ZGLn(S) = ZGLn(s), for
some s ∈ S. Let χi ∈ X∗(Dn) be given by diag(x1, . . . , xn) 7→ xi. It is easy to show that

ZG(S) = {(xij) ∈ GLn | ∀ i, j xij = 0 if χi|S 6= χj |S}.

The set ⋂
i,j

χi|S 6=χj |S

{s ∈ S | χi(s) 6= χj(s)}

is nonempty and open, and thus is dense; any s from the set will do.

Lemma 147. For a closed, connected subgroup H ⊂ G, let X =
⋃
x∈G

xHx−1 ⊂ G.

(i) X contains a nonempty open subset of X.

(ii) H parabolic =⇒ X closed

(iii) If (NG(H) : H) < ∞ and there is y ∈ G lying in only finitely many conjugates of H, then
X = G.

Proof.
(i):

Y := {(x, y) | x−1yx ∈ H = {(x, y) | y ∈ xHx−1} ⊂ G×G

is a closed subset. Note that

pr2(Y ) = {y ∈ | y ∈ xHx−1 for some x} = X

By Chevalley, X contains a nonempty open subset of X.
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(ii): Let P be parabolic.

G×G

pr2
&&

π×id
// G/H ×G

pr′2
��

G

Note that π × id is open (Corollary 89) and that

(x, y) ∈ Y ⇐⇒ ∀h ∈ H (xh, y) ∈ Y.

By the usual argument, (π × id)(Y ) is closed. Since G/P is complete,

pr′2((π × id)(Y )) = pr2(Y ) = X

is closed.

(iii): We have an isomorphism

Y
∼→ G×H, (x, y) 7→ (x, x−1yx)

and so Y is irreducible (as H,G are connected). Consider the diagram

G
pr1
� Y

pr2−−→ G.

pr−1
1 (x) = {(x, xhx−1) | h ∈ H} ∼= H =⇒ all fibers of pr1 have dimension dimH

=⇒ dimY = dimG+ dimH (Theorem 87).

Moreover,
pr−1

2 (y) = {(x, y) | y ∈ xHx−1} ∼= {x | y ∈ xHx−1}

Pick y ∈ G lying in finitely many conjugates of H: x1Hx
−1
1 , . . . , xnHx

−1
n . Then

pr−1
2 (y) =

n⋃
i=1

xiNG(H)

which is a finite union of H cosets by hypothesis ((NG(H) : H) <∞). This implies that

dim pr−1
2 (y) = dimH =⇒ pr2 : Y → pr2(Y ) is a dominant map with minimal fibre dimension 6 dimH

=⇒ dimY − dim pr2(Y ) 6 dimH

=⇒ dim pr2(Y ) > dimY − dimH = dimG

=⇒ pr2(Y ) = G

Theorem 148.

(i) Every g ∈ G is contained in a Borel subgroup.

(ii) Every s ∈ Gs is contained in a maximal torus.
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Proof.
(i): Pick a maximal torus T ⊂ G. Let C = ZG(T )0 be the associated Cartan subgroup. Because C
is connected and nilpotent (Proposition 145), there is a Borel B ⊃ C.

T = Cs (Proposition 145) =⇒ NG(C) = NG(T ) (“⊃” is obvious)

=⇒ (NG(C) : C) = (NG(T ) : ZG(T )0) <∞ (Corollary 55)

By Lemma 146 there is t ∈ T such that ZG(t)0 = ZG(T )0 = C. t is contained in a unique conjugate,
i.e.,

t ∈ xCx−1 =⇒ xCx−1 = C

by the following.

t ∈ xCx−1 =⇒ x−1tx ∈ C, which is a semisimple element

=⇒ x−1tx ∈ Cs = T ⊂ ZG(C)

=⇒ C ⊂ ZG(x−1tx)0 = x−1ZG(t)0x = x−1Cx

=⇒ C = x−1Cx (compare dimensions)

Hence, we can apply Lemma 147 (iii) with H = C to get

G =
⋃
x

xCx−1 ⊂
⋃
xBx−1 =

⋃
xBx−1

with the last equality following from Lemma 147 (ii) (this time with H = B). Hence, G =
⋃
xBx−1,

giving (i) of the theorem.

(ii):

s ∈ Gs =⇒ s ∈ B, for some Borel B by (i)

=⇒ s ∈ T, for some maximal torus T of B by Theorem 136 (i).

(A maximal torus in B is a maximal torus in G by Theorem 142.)

Corollary 149. If B ⊂ G is a Borel then ZB = ZG.

Proof. The inclusion ZB ⊂ ZG follows Corollary 128. For the reverse inclusion, if z ∈ ZG, we have
z ∈ gBg−1 for some g by the above Theorem, and so z = g−1zg ∈ B.

Proposition 150. Let S ⊂ G be a torus.

(i) ZG(S) is connected.

(ii) If B ⊂ G is a Borel containing S, then ZG(S) ∩ B is a Borel in ZG(S), and all Borels of
ZG(S) arise this way.

Proof.
(i): Let g ∈ ZG(S) and B a Borel containing g. Define

X = {xB | g ∈ xBx−1} ⊂ G/B
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which is nonempty by Theorem 148. Consider the diagram

G/B
π←− G α−→ G

in which π is the natural surjection and α : x 7→ x−1gx. We have X = π(α−1(B)). Since π−1(B) is
a union of fibres of π and is closed, and π is open, we have that X is closed. X is thus complete,
being a closed subset of the complete G/B.

S acts on X ⊂ G/B, as for all s ∈ S

xBx−1 3 g =⇒ sxBx−1s−1 3 g (since g = s−1gs).

By the Borel Fixed Point Theorem (120), S as some fixed point xB ∈ X, so

SxB = xB =⇒ Sx ⊂ xB =⇒ S ⊂ xBx−1.

Hence, since g also lies in xBx−1, we have

g ∈ ZxBx−1(S) ⊂ ZG(S)0

where ZxBx−1(S) is connected by Proposition 139. Thus, ZG(S) ⊂ ZG(S)0: equality.

(ii): Let B be a Borel containing S and set Z = ZG(S). Z∩B = ZB(S) is connected by Proposition
139 and is also solvable. Therefore, Z∩B is a Borel of Z if and only if it is parabolic, i.e., if Z/Z∩B
is complete. By the bijective map

Z/(Z ∩B)→ ZB/B

of homogeneous Z-spaces, we see that suffices to show that

ZB/B ⊂ G/B is closed ⇐⇒ Y := ZB ⊂ G is closed (by the definition of the quotient topology)

Z being irreducible implies that

Y = im (Z ×B mult−−−→ G) is irreducible =⇒ Y irreducible.

Let π : B → B/Bu be the natural surjection and define

φ : Y × S → B/Bu, (y, s) 7→ π(y−1sy).

(To make sure that this definition makes sense, i.e., that y−1sy ∈ B, first check it when y ∈ Y =
ZB.) For fixed y,

φy : S → B/Bu, s 7→ φ(y, s) = π(y−1sy)

is a homomorphism. Therefore, by rigidity (Theorem 54), for all y ∈ Y , φe = φy: for all s ∈ S

π(y−1sy) = π(s).

If T ⊃ S is a maximal torus, by the conjugacy of maximal tori in B, we have

uy−1Syu−1 = T

for some u ∈ Bu. But then, by the above,

π(uy−1uyu−1) = π(y−1sy) = π(s) for all s ∈ S
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while π|T : T → B/Bu is injective (an isomorphism even) (Jordan decomposition). Therefore,

uy−1syu−1 = s =⇒ yu−1 ∈ ZG(S) = Z =⇒ y ∈ ZB = Y

and thus Y is closed: Z ∩B ⊂ Z is Borel. Moreover, any other Borel of Z is

z(Z ∩B)z−1 = Z ∩ (zBz−1),

zBz−1 containing S.

Corollary 151.

(i) The Cartan subgroups are the ZG(T ), for maximal tori T .

(ii) If a Borel B contains a maximal torus T , then it contains ZG(T ).

Proof.
(i) follows immediately from the above. For (ii), we have that ZG(T ) is a Borel of ZG(T ). But
ZG(T ) is nilpotent (Proposition 145) and so ZG(T ) ∩B = ZG(T ).

5.5 Conjugacy of parabolic and Borel subgroups.

Theorem 152.

(i) If B ⊂ G is Borel, then NG(B) = B.

(ii) If P ⊂ G is parabolic, then NG(P ) = P and P is connected.

Proof.

(i): Induct on the dimension of G. If G is solvable, then B = G and we are done; suppose otherwise.
Let H = NG(B) and x ∈ H. We want to show that x ∈ B. Pick a maximal torus T ⊂ B. Then
xTx−1 ⊂ B is another maximal torus, and so T, xTx−1 are B-conjugate. Without loss of generality
– changing x modulo B if necessary – suppose that T = xTx−1. Consider

φ : T → T, t 7→ [x, t] = (xtx−1)t−1.

Check that φ is a homomorphism. (Use that T is commutative.)

Case 1. imφ 6= T :
Let S = (kerφ)0, which is a torus and is nontrivial since imφ 6= T . x lies in Z = ZG(S) and
normalises Z ∩ B (which is a Borel of Z by Proposition 150). If Z 6= G, then x ∈ Z ∩ B ⊂ B by
induction. Otherwise, if Z = G, then S ⊂ ZG and B/S ⊂ G/S is a Borel by Corollary 127; hence,

[x] normalises B/S =⇒ [x] ∈ B/S by induction =⇒ x ∈ B.

Case 2. imφ = T :
If imφ = T , then

T ⊂ [x, T ] ⊂ [H,H].
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By Corollary 104, there is a G-representation V and a line kv ⊂ V such that H = StabG(kv). Say
hv = χ(h)v for some character χ : H → Gm. χ(T ) = {e} since T ⊂ [H,H] and χ(Bu) = {e} by
Jordan decomposition. Thus, as B = TBu (Theorem 136), B fixes v. By the universal property of
quotients, we have a morphism

G/B → V, gB 7→ gv.

However, the image of the morphism must be a point, as V is affine, while G/B is complete and
connected; hence, G fixes v and H = G, i.e., B E G. Therefore, G/B is affine, complete, and
connected, and we must have G = B. (In particular, x ∈ B.)

(ii): By Theorem 125, P ⊃ B for some Borel B of G. Suppose n ∈ NG(P ). Then nBn−1, B are
both contained in – and are Borels of – P 0. Therefore, there must be g ∈ P 0 such that

nBn−1 = gBg−1 =⇒ g−1n ∈ NG(B) = B by (i) =⇒ n ∈ gB ⊂ P 0.

Hence,
P ⊂ NG(P ) ⊂ P 0 ⊂ P.

Proposition 153. Fix a Borel B. Any parabolic subgroup is conjugate to a unique parabolic
containing B.

Remark 154. For a fixed B, the parabolics containing B are called standard parabolic sub-
groups.

Example. If G = GLn and B = Bn, then the standard parabolic subgroups are the subgroups, for
integers ni > 1 with n =

∑m
i ni, consisting of matrices

An1 ∗ ∗ ∗
An2 ∗ ∗

. . . ∗
Anm


where Ani ∈ GLni .

Proof of proposition.
Let P be a parabolic. P contains some Borel gBg−1, so B ⊂ g−1Pg. This takes care of existence.
For uniqueness, let P,Q ⊃ B be two conjugate parabolics; say, P = gQg−1.

gBg−1, B ⊂ Q Borels =⇒ g−1Bg = qBq−1 for some q ∈ Q
=⇒ gq ∈ NG(B) = B

=⇒ g ∈ Bq−1 ⊂ Q
=⇒ P = Q

Proposition 155. If T is a maximal torus and B is a Borel containing T , then we have a bijection

NG(T )/ZG(T )
∼→ {Borels containing T}

[n] 7→ nBn−1
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Exercise. If G = GLn, B = Bn, and T = Dn, we have that ZG(T ) = T , NG(T ) = permutation

matrices, and that NG(T )/ZG(T ) ∼= Sn. When n = 2, the two Borels containing T are

(
∗ ∗
0 ∗

)
and

(
∗ 0
∗ ∗

)
.

Proof of proposition.
If B′ ⊃ T is a Borel, then

B′ = gBg−1 for some g =⇒ g−1Tg, T ⊂ B are maximal tori

=⇒ g−1Tg = bTb−1 for some b ∈ B
=⇒ n := gb ∈ NG(T )

=⇒ B′ = gBg−1 = nBn−1.

Also,

nBn−1 = B ⇐⇒ n ∈ NG(B) ∩NG(T ) = B ∩NG(T ) = NB(T )
139
= ZB(T )

151
= ZG(T ).

Remark 156. Given a Borel B ⊂ G, we have a bijection

G/B
∼→ {Borels of G}

gB 7→ gBg−1

The projective variety G/B is called the flag variety of G (independent of B up to isomorphism).

Example. When G = GLn, B = Bn

G/B
∼→ {flags 0 ( V1 ( V2 ( · · · ( Vn = kn}

gB 7→ g

(
0 (


∗
0
0
...
0

 (


∗
∗
0
...
0

 ( · · · (


∗
∗
∗
...
∗

 = kn
)
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6. Reductive groups.

6.1 Semisimple and reductive groups.

Definitions 157. The radical RG of G is the unique maximal connected, closed, solvable, normal
subgroup of G. Concretely,

RG =

( ⋂
B Borel

B

)0

(Recall that any two Borels are conjugate.) The unipotent radical of G is the unique maximal
connected, closed, unipotent, normal subgroup of G:

RuG = (RG)u =

( ⋂
B Borel

Bu

)0

G is semisimple if RG = 1 and is reductive if RuG = 1.

Remarks 158.
• G semisimple =⇒ G reductive
• G/RG is semisimple and G/RuG is reductive. (Exercise!)
• If G is connected and solvable, then G = RG and G/RuG = G/Gu is a torus. Hence a connected,
solvable G is reductive ⇐⇒ G is a torus.

Example.
• GLn is reductive. Indeed,

R(GLn) ⊂
(
∗ ∗
0 ∗

)
∩
(
∗ 0
∗ ∗

)
= Dn =⇒ Ru(GLn) = 1

Similarly, SLn is reductive.
• GLn is not semisimple, as {diag(x, x, . . . , x) | x ∈ k×} E GLn. SLn is semisimple by Proposition
159 (iii) below.

Proposition 159. G is connected, reductive.

(i) RG = Z0
G, a central torus.

(ii) RG ∩ DG is finite.

(iii) DG is semisimple.

Remark 160. In fact, RG · DG = G, so G = DG when G is semisimple. Hence, by (ii) above,

RG×DG mult.−−−→ G is surjective with finite kernel.
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Proof.
(i). 1 = RuG = (RG)u =⇒ RG is a torus, by Proposition 133. Hence, by rigidity (Corollary 55)
NG(RG)0 = ZG(RG)0. Moreover, since RG E G

G = NG(RG)0 = ZG(RG)0 =⇒ G = ZG(RG) =⇒ RG ⊂ Z0
G

The reverse inclusion is clear.

(ii). S := RG is a torus. Embed G ↪→ GL(V ). V decomposes as V =
⊕

χ∈X(S) Vχ.

S is central =⇒ G stabilises each Vχ =⇒ G ↪→
∏
χ

GL(Vχ)

It follows that DG ↪→
∏
χ SL(Vχ) and RG acts by scalars on each Vχ. Since the scalars in SLn are

given by the n-th roots of unity, the result follows.

(iii).

DG E G =⇒ R(DG) ⊂ RG
=⇒ R(DG) ⊂ RG ∩ DG, which is finite

=⇒ R(DG) = 1

Definition 161. For a maximal torus T ⊂ G,

I(T ) :=

( ⋂
B Borel
B⊃T

B

)0

which is a connected, closed, solvable subgroup with maximal torus T : I(T ) = I(T )u o T (see
Theorem 136).

Claim:

I(T )u =

( ⋂
B⊃T

Bu

)0

Proof.
“ ⊂ ”: For all Borels B ⊃ T

I(T ) ⊂ B =⇒ I(T )u ⊂ Bu =⇒ I(T )u ⊂
⋂
B⊃T

Bu =⇒ I(T )u ⊂
( ⋂
B⊃T

Bu

)0

as I(T )u is connected.

“ ⊃ ”:

(⋂
B⊃T Bu

)0

⊂ I(T ) and consists of unipotent elements.

Remark 162.

I(T ) ⊃
(⋂

B

B

)0

= RG =⇒ I(T )u ⊃ RuG

In fact, the converse is true and equality holds.
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Theorem 163 (Chevalley). I(T )u = RuG. Hence,

G reductive ⇐⇒ I(T )u = 1 ⇐⇒ I(T ) = T

Corollary 164. Let G be connected, reductive.

(i) S ⊂ G subtorus =⇒ ZG(S) connected, reductive.

(ii) T maximal torus =⇒ ZG(T ) = T .

(iii) ZG is the intersection of all maximal tori. (In particular, ZG ⊂ T for all maximal tori T .)

Proof of corollary.
(i): ZG(S) is connected by Proposition 150. Let T ⊃ S be a maximal torus, so that T ⊂ ZG(S) =:
Z. Again by Proposition 150

{ Borels of Z containing T } = {Z ∩B | B ⊃ T Borel of G}

=⇒ IZ(T ) =

( ⋂
B⊃T

(Z ∩B)

)0

⊂ I(T )
163
= T

=⇒ IZ(T ) = T

=⇒ Z is reductive, by the theorem

(ii): ZG(T ) is reductive by (i) and solvable (as it is a Cartan subgroup, which is nilpotent by
Proposition 145). Hence, ZG(T ) is a torus: T = ZG(T ), by maximality, since T ⊂ ZG(T ).

(iii): T maximal =⇒ T = ZG(T ) ⊃ ZG. For the converse, let H =
⋂
T max. T , which is a closed,

normal subgroup of G (normal because all maximal tori are conjugate). Since H is commutative
and H = Hs, H is diagonalisable, and by Corollary 55

G = NG(H)0 = ZG(H)0 =⇒ G = ZG(H) =⇒ H ⊂ ZG

We will now build up several results in order to prove Theorem 163, following D. Luna’s proof from
1999 1.

Proposition 165. Suppose V is a Gm-representation. Gm acts on PV . If v ∈ V − {0}, write [v]
for its image in PV . Then either, Gm · [v] = [v], i.e., v is a Gm-eigenvector, or Gm · [v] contains
two distinct Gm-fixed points.

Precise version of the proposition: Write V =
⊕

n∈Z=X∗(Gm)

Vn, where

Vn = {v ∈ V | t · v = tnv ∀ t ∈ Gm , i.e., “v has weight n”}

For v ∈ V , write v =
∑

n∈Z vn with vn ∈ Vn. Then

[vr], [vs] ∈ Gm · [v]

where r = min{n | vn 6= 0} and s = max{n | vn 6= 0}. Clearly, [vr], [vs] are Gm-fixed. In fact, if
Gm · [v] 6= [v], then

Gm · [v] = (Gm · [v]) t {[vr]} t {[vs]}
1See for example P. Polo’s M2 course notes (§21 in Séance 5/12/06) at www.math.jussieu.fr/~polo/M2
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Proof. Pick a basis e0, e1, . . . , en of V such that ei ∈ Vmi . Without loss of generality m0 6 m1 6
· · · 6 mn. Write v =

∑
i λiei, λi ∈ k. The orbit map f : Gm → PV is given by mapping t to

t · [v] = (tm0λ0 : tm1λ1 : · · · : tmnλn) = (0 : · · · : 0 : λu : · · · : tmi−rλi : · · · : ts−rλv : 0 : · · · : 0)

where u = min{i | λi 6= 0} and v = max{i | λi 6= 0}, so that mu = r and mv = s.

Define f̃ : P1 → PV by

(T0 : T1) 7→ (0 : · · · : 0 : T s−r1 λu : · · · : Tmi−r0 T s−mi1 λi : · · · : T s−r0 λv : 0 : · · · : 0)

Check that this a morphism and that f̃ |Gm = f . (In fact, f̃ is the unique extension of f , since PV
is separated and Gm is dense.) We have

f̃(P1) = f̃(Gm) ⊂ f̃(Gm) = Gm · [v]

and
f̃(0 : 1) = (0 : · · · : λu : · · · : 0 : · · · 0) = [vr] and f̃(1 : 0) = · · · = [vs]

(In fact, we actually have f̃(P1) = Gm · [v], using the fact that P1 is complete).

Informally, above, we have

[vr] = lim
t→0

t · [v] ∈ (PV )Gm

[vs] = lim
t→∞

t · [v] ∈ (PV )Gm

Lemma 166. Let M be a free abelian group, and M1, . . . ,Mr (M subgroups such that each M/Mi

is torsion-free. Then
M 6= M1 ∪ · · · ∪Mr

Proof. Since M/Mi is torsion-free, it is free abelian, and

0→Mi →M →M/Mi → 0

splits, giving that Mi is a (proper) direct summand of M . Thus, Mi ⊗C (M ⊗C; hence

M ⊗C 6=
r⋃
i=1

Mi ⊗C

as the former is irreducible and the latter are proper closed subsets.

Lemma 167. Let T be a torus and V and algebraic representation of T , so that T acts on PV .
Then, there is a cocharacter λ : Gm → T such that (PV )T = (PV )λ(Gm).

Proof. Let χ1, . . . , χr ∈ X∗(T ) be distinct such that V =
⊕r

i=1 Vχi and Vχi 6= 0 for all i. Then

[v] ∈ (PV )T ⇐⇒ v ∈ Vχi for some i

So it is enough to show that there is a cocharacter λ such that

∀ i 6= j χi ◦ λ 6= χj ◦ λ ⇐⇒ (χi − χj) ◦ λ 6= 0
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Recall from Proposition 33 we have that

X∗(T )×X∗(T )→ X∗(Gm) ∼= Z, (χ, λ) 7→ χ ◦ λ

is a perfect pairing.

Let M = X∗(T ), which is free abelian, and for all i 6= j

Mij := {λ ∈ X∗(T ) | 〈χi − χj , λ〉 = 0} 6= M ( as χi 6= χj)

For n > 0, if nλ ∈ Mij , then λ ∈ Mij , and so M/Mij is torsion-free. By the above lemma,
M 6=

⋃
i 6=jMij , so there is a λ ∈M such that

∀ i 6= j 0 6= 〈χi − χj , λ〉 = (χi − χj) ◦ λ

Theorem 168 (Konstant-Rosenlicht). Suppose that G is unipotent and X is an affine G-space.
Then all orbits are closed.

Proof. Let Y ⊂ X be an orbit.Without loss of generality, we replace X by Y (which is affine). Since
Y is locally closed and dense, it is open. Let Z = X−Y , which is closed. G acts (locally-algebraic)
on k[X], preserving IX(Z) ⊂ k[X]. IX(Z) 6= 0, as Z 6= X. By Theorem 40, since G is unipotent, it
has a nonzero fixed point, say, f in IX(Z). f is G-invariant and hence is constant on Y . But then

Y is dense =⇒ f is constant (6= 0) =⇒ k[X] = IX(Z) =⇒ Z = ∅ =⇒ Y = X is closed

Now, we want to prove Theorem 163. Fix a Borel B ⊂ G and set X = G/B, a homogeneous
G-space. Note that

XT = {gB | Tg ⊂ gB ⇐⇒ T ⊂ gBg−1} ↔ {Borel subgroups containing T}

Furthermore, by Proposition 155, XT in bijection with NG(T )/ZG(T ) and hence is finite. Thus
NG(T )/ZG(T ) acts simply transitively on XT . For p ∈ XT , define

X(p) = {x ∈ X | p ∈ Tx}

Proposition 169 (Luna). For p ∈ XT , X(p) is open (in X), affine, and I(T )-stable.

Proof. By Corollary 104 there exists a G-representation V and a line L ⊂ V such that B = StabG(L)
and LieB = Stabg(L). This gives a map of G-spaces

i : X = G/B → PV, g 7→ gL.

i and di are injective (Corollary 105); hence, i is a closed immersion (Corollary 105). Without loss
of generality, X ⊂ PV is a closed G-stable subvariety – and, replacing V by the G-stable 〈G · L〉,
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we may also suppose that X is not contained in any PV ′ ⊂ PV for any subspace V ′ ⊂ V .

By Lemma 167, there is a cocharacter λ : Gm → T such that XT = XGm , considering X and PV
as Gm-spaces via λ. For p ∈ XT , write p = [vp] for some vp ∈ Vm(p), m(p) ∈ Z (weight). Pick

p0 ∈ XT such that m0 := m(0) is minimal. Set e0 = vp0 and extend e0 to a basis e0, e1, . . . , en of
V such that λ(t)ei = tmiei. Without loss of generality, m1 6 · · · 6 mn. Let e∗0, . . . , e

∗
n ∈ V ∗ denote

the dual basis.

Claim 1. m0 < m1:
Suppose that m0 > m1. There is [v] ∈ X such that e∗1(v) 6= 0 (otherwise X ⊂ P(ker e∗1) ( PV ).
Then, by Proposition 165,

[vm1 ] = lim
t→0

λ(t)[v] ∈ (PV )Gm ∩X = XT

(with the inclusion following from the fact that X is complete). This contradicts the minimality of
m0, so we must have m0 6 m1.

Suppose that m0 = m1. Define

Z = {z ∈ k | there is some point of the form (1 : z : · · · ) in X}

If (1 : z : · · · ) ∈ X, then by Proposition 165, as m0 = m1,

(1 : z : · · · )′ = lim
t→0

λ(t)(1 : z : · · · ) ∈ XT .

Since XT is finite, so too is Z. Writing Z = {z1, . . . , zr}, we have

X ⊂ P(ker e∗0) ∪
r⋃
i=1

P(ker(e∗1 − zie∗0)).

Since X is irreducible, it is contained in one of these subspaces, which is a contradiction.

Therefore, m0 < m1.

Claim 2.X(λ, p0) := {x ∈ X |e∗0(x) 6= 0} is open in X, affine, and T -stable. Also, X(λ, p0) = X(p0),
and it is I(T )-stable:
X(λ, p0) = X ∩ (e∗0 6= 0) is open in X and affine (as (e∗0 6= 0) is open and affine in PV ). It is
T -stable, as e∗0 is an eigenvector for T (as e0 is an eigenvector for T ).

If x ∈ X(λ, p0), as m0 < mi for all i 6= 0 (Claim 1),

lim
t→0

λ(t)x = [e0] = p0.

Hence, p0 ∈ Gm · x ⊂ Tx, so x ∈ X(p0). Let x ∈ X(p0) and suppose that e∗0(x) = 0. Then

p0 ∈ Tx ⊂ X −X(λ, p0)

with X −X(λ, p0) T -stable and closed. This is a contradiction and so we must have x ∈ X(λ, p0).
Hence, X(λ, p0) = X(p0).
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To show that the set is I(T )-stable, we need to show that from the of G on P(V ∗) (which arises
from the action on V ∗), we have

e⊥0 = {` ∈ V ∗ | 〈`, e0〉 = 0}

First, let us address a third claim.

Claim 3. (i) Each G-orbit in P(V ∗) intersects the open subset P(V ∗)−P(e⊥0 ) and (ii) G · [e∗0] is
closed in P(V ∗): (i): Pick v ∈ V ∗ − {0}. If G` ⊂ e⊥0 , then for all g ∈ G

0 = 〈g`, e0〉 = 〈`, g−1e0〉.

But Ge0 spans V (otherwise, X = Ge0 ⊂ P(V ′) ( PV , which is a contradiction) and so

〈`, V 〉 = 0 =⇒ ` = 0

which is another contradiction. Hence, G[`] 6⊂ P(e⊥0 ).

(ii): e∗i has weight −mi under the Gm-action and

−mn 6 · · · 6 −m1 < −m0.

Hence by Proposition 165, if x ∈ P(V ∗)−P(e⊥0 ) then [e∗0] ∈ Gm · x. So, for all x ∈ P(V ∗), by (i),

[e∗0] ∈ Gx =⇒ G[e∗0] ⊂ Gx.

If Gx is a closed orbit (which exists), we deduce that it is equal to G[e∗0].

Let us return to Claim 2, that X(λ, p0) is I(T )-stable. Recall that I(T ) =

( ⋂
B′⊃T

B′

)0

. Define

P = StabG([e∗0]). Since G/P → G[e∗0] is bijective map of G-spaces and the latter space is complete
(Claim 3), it follows that P is parabolic. Hence, there is a parabolic B′ of G contained in P .
Moreover, since e∗0 is a T -eigenvector, T ⊂ P . There is a maximal torus of B′ conjugate to T in P ,
so without loss of generality suppose that T ⊂ B′ ⊂ P . It follows that I(T ) (⊂ B′) stabilises [e∗0]
and hence also stabilises the set

X(λ, p0) = {x ∈ X | e∗0(x) 6= 0},

completing Claim 2.

Now, NG(T ) acts transitively on XT by above. If p ∈ XT , then p = np0 for some n ∈ NG(T );
hence X(p) = nX(p0) is open, affine, and stable under nI(T )n−1 = I(T ) (equality following from
the fact that n permutes the Borels containing T ).

Corollary 170. dimX 6 1 + dim(X −X(p0))

Proof. Either X = X(p0) or otherwise. If equality holds, then X is complete, affine, and connected,
and is thus a point. In this case, dimX = 0 and the inequality is true. Suppose that X 6= X(p0)(=
X(λ, p0)). Pick y ∈ X −X(λ, p0). Then e∗0(y) = 0, and e∗i (y) 6= 0 for some i > 0. Let

U = {x ∈ X | e∗i (x) 6= 0} ⊂ X,
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which is nonempty and open. Define the morphism

f : U → A1, x 7→ e∗0(x)

e∗i (x)

f−1(0) ⊂ X −X(λ, p0). By Corollary 89,

dim(X −X(λ, p0)) > dimU − dim f(U) > dimU − 1 = dimX − 1

Proposition 171 (Luna). I(T )u acts trivially on X = G/B.

Proof. J := I(T )u. If x ∈ X, then Tx contains a T -fixed point by the Borel Fixed Point Theorem;
hence

X =
⋃

x∈XT

X(p).

Fix x ∈ X. J being connected, solvable implies that Jx contains a J-fixed point y. By the above,
we see that y ∈ X(p) for some p ∈ XT . If

Jx ∩ (X −X(p)) 6= ∅,

with X −X(p) closed and J-stable by Proposition 169, then

y ∈ Jx ⊂ X −X(p)

which is a contradiction. Hence, Jx ⊂ X(p), X(p) being affine by Proposition 169, and J being
unipotent implies that Jx ⊂ X(p) is closed by Kostant-Rosenlicht (168). But

y ∈ X(p) ∩ Jx = Jx (Jx is closed) =⇒ Jx = Jy = y, as y is J-fixed

=⇒ x = y is J-fixed

=⇒ J acts trivially on X.

Proof of Theorem 163.
Let J = I(T )u again. We want to show that J = RuG and we already know that J ⊃ RuG. For
the reverse inclusion, we have that for all g ∈ G,

J(gB) = gB (Theorem 171) =⇒ Jg ⊂ gB
=⇒ J ⊂ gBg−1

=⇒ J ⊂ (gBg−1)u, as J is unipotent

=⇒ J ⊂
(⋂

g

(gBg−1)u

)0

= RuG, as J is connected
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6.2 Overview of the rest.

Plan for the rest of the course: Given connected, reductive G (and a maximal torus T ) we
want to show the following:
• g = LieT ⊕

⊕
α∈Φ gα, under the adjoint action of T , where Φ ⊂ X∗(T ) is finite.

• There is a natural bijection Φ
∼→ Φ∨, where Φ∨ ⊂ X∗(T ) is such that (X∗(T ),Φ, X∗(T ),Φ∨) is a

root datum (to be defined shortly).
• For all α ∈ Φ, there is a unique closed subgroup Uα ⊂ G, normalised by T , such that LieUα = gα.
• G = 〈T ∪

⋃
α∈Φ Uα〉.

From now on G denotes a connected, reductive algebraic group. Fix a maximal torus T , so that

g =
⊕

λ∈X∗(T )

gλ

for the adjoint T -action. We write X∗(T ) additively, so

g0 = {X ∈ g |Ad(t)X = X for all t ∈ T} = zg(T )
100
= LieZG(T )

164
= LieT = t

Define Φ = Φ(G,T ) := {α ∈ X∗(T )− {0} | gα 6= 0}, which is finite. The α ∈ Φ are the roots of G
(with respect to T ). Hence,

g = t⊕
⊕
α∈Φ

gα

Definition 172. The Weyl group of (G,T ) is

W = W (G,T ) := NG(T )/ZG(T )
164
= NG(T )/T

which is finite by Corollary 55. W acts faithfully on T by conjugation , and hence acts on X∗(T )
and X∗(T ):

w ∈W 7→

{
(w−1)∗ : X∗(T )→ X∗(T )

w∗ : X∗(T )→ X∗(T )

Explicitly,

wµ = µ(ẇ−1(·)ẇ), for µ ∈ X∗(T )

wλ = ẇλ(·)ẇ−1, for λ ∈ X∗(T )

where ẇ ∈ NG(T ) lifts w.

Remarks 173.
• The natural perfect pairing X∗(T )×X∗(T )→ Z is W -invariant: 〈wµ,wλ〉 = 〈µ, λ〉.
• W preserves Φ ⊂ X∗(T ) because NG(T ) permutes the eigenspaces gα. (Check that Ad(ẇ)gα =
gwα.)

Example. G = GLn, T = Dn.
g = Mn(k) and T acts by conjugation.

g =


∗
∗

. . .

∗

⊕⊕
i,j
i 6=j


∗
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where in the summands on the right ∗ appears in the (i, j)-th entry. On the (i, j)-th summand,
diag(x1, . . . , xn) ∈ T acts as multiplication by xix

−1
j . Letting εi ∈ X∗(T ) denote diag(x1, . . . , xn) 7→

xi, we get that Φ = {εi − εj | i 6= j}. Also, W = NG(T )/T ∼= Sn acts by permuting the εi.

Lemma 174. If φ : H → H ′ is a surjective morphism of algebraic groups and T ⊂ H is a maximal
torus, then φ(T ) ⊂ H ′ is a maximal torus.

Proof. Pick a Borel B ⊃ T , so that B = Bu o T and φ(B) = φ(Bu)φ(T ). φ(B) is a Borel of
H ′ by Corollary 127. φ(T ) is a torus, as it is connected, commutative, and consists of semisimple
elements. φ(Bu) ⊂ φ(B)u is unipotent (Jordan decomposition). Finally,

φ(T )→ φ(B)/φ(B)u bijective (Jordan decomposition) =⇒ dimφ(T ) = dimφ(B)/ dim(B)u

=⇒ φ(T ) ⊂ φ(B) maximal torus

=⇒ φ(T ) ⊂ H ′ maximal torus

Lemma 175. If S ⊂ T be a subtorus, then

ZG(S) ) T ⇐⇒ S ⊂ (kerα)0 for some α ∈ Φ

Proof. We always have ZG(S) ⊃ T . Note that

LieZG(S)
100
= zg(S) = {X ∈ g |Ad(s)(X) = X for all s ∈ S} = t⊕

⊕
α∈Φ
α|S=1

gα

“ ) ” ⇐⇒ LieZG(S) ) t, by dimension considerations

⇐⇒ t⊕
⊕
α∈Φ
α|S=1

gα ) t

⇐⇒ S ⊂ kerα, for some α ∈ Φ

For α ∈ Φ, define Tα := (kerα)0, which is a torus of dimension dimT − 1, as imα = Gm. Define
Gα := ZG(Tα), which is connected, reductive by Corollary 164. Note that

Tα ⊂ Z0
Gα

159
= R(Gα)

Let π denote the natural surjection Gα → Gα/R(Gα). By Lemma 174, π(T ) is a maximal torus of
Gα/R(Gα).

Tα ⊂ R(Gα) =⇒ T/Tα � π(T ) =⇒ dimπ(T ) 6 1

If dimπ(T ) = 0, then
T ⊂ R(Gα) ⊂ ZGα =⇒ Gα ⊂ ZG(T ) = T

which is a contradiction by Lemma 175. Hence, dimπ(T ) = 1.

74



Definitions 176.

the rank of G = rk G := dimT, where T is a maximal torus

the semisimple rank of G = ss-rk G := rk(G/RG)

Hence, ss-rk Gα = 1. Note that since all maximal tori are conjugate, rank is well-defined, and that
ss-rk G 6 rk G by Lemma 174.

Example. G = GLn, α = εi − εi+1. We have

Tα = {diag(x1, . . . , xn) | xi = xi+1}

and
Gα = Di−1 ×GL2 ×Dn−i−1.

Gα/RGα ∼= PGL2 and DGα ∼= SL2.

6.3 Reductive groups of rank 1.

Proposition 177. Suppose that G is not solvable and rk G = 1. Pick a maximal torus T and a
Borel B containing T . Let U = Bu.

(i) #W = 2, dimG/B = 1, and G = B t UnB, where n ∈ NG(T )− T .

(ii) dimG = 3 and G = DG is semisimple.

(iii) Φ = {α,−α} for some α 6= 0, and dim g±α = 1.

(iv) ψ : U ×B → UnB, (u, b) 7→ unb, is an isomorphism of varieties.

(v) G ∼= SL2 or PGL2

Remark 178. In either case, G/B ∼= P1. For example,

SL2/

(
∗ ∗
∗

)
∼→ P1,

(
a b
c d

)
7→ (a : c)

Proof of proposition.
(i):

W ↪→ Aut(X∗(T )) ∼= Aut(Z) = {±1} =⇒ #W 6 2

If W = 1, then B is the only Borel containing T , and so by Theorem 163

B = I(T ) = T =⇒ B nilpotent
130
=⇒ G solvable

which contradicts our hypothesis; hence, #W = 2.

Set X := G/B. dimX > 0 since B 6= G. By Proposition 155 we have #XT = #W = 2. By
Corollary 170

dimX 6 1 + dim(X −X(p0))

Since X −X(p0) is T -stable and closed (Proposition 169), it can contain at most one T -fixed point
(as #XT = 2, p0 ∈ X(p0)). By Proposition 165, T acts trivially and so X −X(p0) is finite:

dimX 6 1.
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Now,

#W = 2 =⇒ B,nBn−1 are the two Borels containing T

=⇒ XT = {x, nx},where x := B ∈ G/B

We want to show that X = {x}tUnx, which will imply that G = BtUnB. Note that x is U -fixed,
so {x} and Unx are disjoint (as x 6= nx). Also, Unx is T -stable, as

TUnx = UTnx = UnTx = Unx,

and Unx 6= {nx}, as otherwise

{nx} = Unx = Bnx =⇒ {x} = n−1Bnx =⇒ n−1Bn ⊂ StabG(x) = B =⇒ contradiction

Hence, Unx = X, by dimension considerations, so Unx ⊂ X is open, X − Unx is finite (as
dimX = 1), and X − Unx is T -stable. T is connected and so

U − Unx ⊂ XT = {x, nx} =⇒ X − Unx = {x}

(ii):

1 = dimUnx

= dimU − dim(U ∩ nUn−1), as Unx is a U -orbit

= dimU, as U ∩ nUn−1 = StabU (nx) is finite by Theorem 163

Hence,

dimB = dimT + dimU = 1 + 1 = 2

dimG = dimB + dim(G/B) = 2 + 1 = 3

DG is semisimple by Proposition 159 and is not solvable (as G is not). rk DG 6 rk G = 1. If
rk DG = 0, then a Borel of DG is unipotent, which by Proposition 130 implies that DG is solvable:
contradiction. (Or, T1 = {1} is a maximal torus and T1 = ZDG(T1) = DG: contradiction.) Hence,
rk DG = 1, so dimDG = 3 by the above: DG = G.

(iii): g = t⊕
⊕

α∈Φ gα. Since dim g = 3 and dim t = 1, we have #Φ = 2. Moreover, Φ is W -stable
and [n] ∈W acts by −1 on X∗(T ), and so Φ = {α, α} for some α: dim g±α = 1. From B = U o T
we have LieB = t⊕LieU and LieU = gα or g−α, as LieU is a T -stable subspace of g of dimension
1. Without loss of generality, LieU − gα. Likewise,

nBn−1 = nUn−1 o T =⇒ Lie (nBn−1) = t⊕ Lie (nUn−1)

Since Lie (nUn−1) = Ad(n)(LieU) and [n] ∈W acts as −1 on X∗(T ), Lie (nUn−1) = g−α.

(iv). This is a surjective map of homogeneous U ×B spaces.

unb = n =⇒ u ∈ U ∩ nBn−1 = U ∩ nUn−1, which is finite by Theorem 163

=⇒ U ∩ nUn−1 = 1,

(as T , being connected, acts trivially by conjugation =⇒ U ∩ nUn−1 ⊂ ZG(T ) = T )

=⇒ ψ is injective, hence bijective

76



dφ bijective ⇐⇒ d

( (u,b) 7→ unbn−1

U ×B → UnBn−1

)
injective

⇐⇒ d(U × (nBn−1)
mult.−−−→ UnBn−1) injective

⇐⇒ 0 = LieU ∩ Lie (nBn−1) = gα ∩ (t⊕ g−α)

(v). See Springer 7.2.4.

6.4 Reductive groups of semisimple rank 1.

Lemma 179. If φ : H → K is a morphism of algebraic groups, then

dφ(Ad(h) ·X) = Ad(φ(h)) · dφX

Proof. Exercise. (Easy!)

Proposition 180. Suppose that ss-rk G = 1. Set G := G/RG and T := image of T in G (T being
a maximal torus). Note that X∗(T ) ⊂ X∗(T ) as T � T .

(i) There is α ∈ X∗(T ) such that g = t⊕ gα ⊕ g−α, and dim g±α = 1.

(ii) DG ∼= SL2 or PGL2

(iii) #W = 2, so there are precisely two Borels containing T , and, if B is one, then

LieB = t⊕ g±α and LieBu = g±α

(iv) If T1 denotes the unique maximal torus of DG contained in T , then ∃!α∨ ∈ X∗(T1) ⊂ X∗(T )
such that 〈α, α∨〉 = 2. Moreover, letting W = {1, sα}, we have

sαµ = µ− 〈µ, α∨〉α for all µ ∈ X∗(T )

sαλ = λ− 〈α, λ〉α∨ for all λ ∈ X∗(T )

Proof.

(i): G is semisimple of rank 1.
We have

0→ LieRG→ LieG→ LieG→ 0

From Lemma 179, restricting actions, we have that the morphisms T → T and LieG → LieG are
compatible with the action of T on LieG and T on LieG. T acts trivially on LieRG (as RG ⊂ T ).
Thus,

Φ = Φ(G,T ) = {α,−α} ⊂ X∗(T ) ⊂ X∗(T )

and dim g±α = 1.
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(ii): DG is semisimple by Proposition 159. If T1 ⊂ DG is a maximal torus with image T 1 in G,
then

dimT1 = dimT 1 + dim(T1 ∩RG) 6 1

the inequality being due to the fact that T1 ∩ RG ⊂ DG ∩ RG is finite by Proposition 159. If
dimT1 = 0, then the Borel of DG is unipotent, implying that DG is solvable, which gives that G
is solvable, a contradiction. Hence, rk DG = 1. By Proposition 177, DG ∼= SL2 or PGL2.

(iii): First a lemma.

Lemma 181. Suppose that π : G� G′ with kerπ connected and solvable. Then π(T ) is a maximal
torus of G′ and we have a bijection

{Borels of G containing T}
π
�
π−1

{ Borels of G′ containing π(T ) }

Moreover, G′ is reductive.

Proof of lemma. In the proposed bijection,
π−→ is well-defined by Corollary 127. For the inverse, note

that G/π−1(B′) → G′/B′ is bijective, which gives that π−1(B′) is parabolic as well as connected
and solvable (kerπ and B′ are connected and solvable).

π−1(RG′) is a connected, solvable, normal subgroup of the torus RG. RG′ = π(π−1(RG′)) is then
a torus and so G′ is reductive.

By the Lemma, #W = #W (G,T )
177
= 2. Pick a Borel B ⊃ T , so that B ⊃ T is a Borel.

1→ RG→ B → B → 1

being exact implies that
0→ LieRG→ LieB → LieB → 0

is also exact. T again acts trivially on LieRG.

LieB = LieT ⊕ g±α =⇒ LieB = t⊕ g±α.

Also,
LieB = t⊕ LieBu =⇒ LieBu = g±α

(iv) T1 exists, as DG E G (exercise). It is unique, as T1 = (T ∩ DG)0. (Another exercise:
T1 = T ∩ DG. Use that DG is reductive.) Let y be a generator of X∗(T ) ∼= Z. We have the
containment

LieDG ⊂ g = t⊕ gα ⊕ g−α

with T1 acting in the former and T on the latter. DG being reductive implies – by Proposition 177
–

Φ(DG,T1) = {±α|T1}.

DG ∼= SL2:

T1 = {
(
x

x−1

)
| x ∈ k×} ⊂ SL2.
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By the adjoint action (conjugation), T1 acts on

Lie SL2 = M2(k)trace 0 = k

(
1 0
0 −1

)
⊕ k

(
0 1
0 0

)
⊕ k

(
0 0
1 0

)
.

Its roots are

α :

(
x

x−1

)
7→ x2, −α :

(
x

x−1

)
7→ x−2.

Moreover, we can take

y = x 7→
(
x

x−1

)
(or its inverse), which gives

〈α, y〉 = ±2.

DG ∼= PGL2
∼= GL2/Gm:

T1 is equal to the image of D2 in PGL2. By the adjoint action, T1 acts on

Lie PGL2 = M2(k)/k = k

[(
1 0
0 −1

)]
⊕ k

[(
0 1
0 0

)]
⊕ k

[(
0 0
1 0

)]
.

Its roots are

α :

[(
x1

x2

)]
7→ x1x

−1
2 , −α :

[(
x1

x2

)]
7→ (x1x

−1
2 )−1 = x−1

1 x2.

Moreover, we can take

y = x 7→
[(
x

1

)]
(or its inverse), which gives

〈α, y〉 = ±1.

Therefore, in any case,

α∨ :=
2y

〈α, y〉
∈ X∗(T1)

and it is the unique cocharacter such that 〈α, α∨〉 = 2.

If λ ∈ X∗(T ),
sαλ− λ : Gm → T, x 7→ [n, λ(x)] = nλ(x)n−1λ(x)−1,

where n ∈ NG(T ) is such that [n] = sα. sαλ− λ has image in (T ∩ DG)0 = T1; hence

sαλ− λ ∈ X∗(T1) = Zy.

Say sαλ− λ = θ(λ)y. We have

θ(λ)〈α, y〉 = 〈α, sαλ− λ〉 = 〈α, sαλ〉 − 〈α, λ〉
= 〈sα(α), λ〉 − 〈α, λ〉.
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At this point we see that sα(α) = −α. (Otherwise, sα(α) = α, which implies θ = 0, i.e. that sα
acts trivially on X∗(T ), which is a contradiction.) So we can continue:

= 〈−α, λ〉 − 〈α, λ〉
= −2〈α, λ〉

Therefore,

θ(λ) =
−2〈α, λ〉
〈α, y〉

and

sαλ = λ+ θ(λ)y = λ− 2〈α, λ〉
〈α, y〉

y = λ− 〈α, λ〉α∨.

If µ ∈ X∗(T ), then for all λ ∈ X∗(T )

〈sαµ, λ〉 = 〈µ, sαλ〉 = 〈µ, λ〉 − 〈α, λ〉〈µ, α∨〉 = 〈µ− 〈µ, α∨〉α, λ〉

and so
sαµ = µ− 〈µ, α∨〉α.

Lemma 182.

(i) Let S ⊂ T be a subtorus such that dimS = dimT − 1. Then

ker(res : X∗(T )→ X∗(S)) = Zµ

for some µ ∈ X∗(T ).

(ii) If ν ∈ X∗(T ), m ∈ Z− {0}, then (ker ν)0 = (kermν)0.

(iii) If ν1, ν2 ∈ X∗(T )− {0}, then

(ker ν1)0 = (ker ν2)0 ⇐⇒ mν1 = nν2

for some m,n ∈ Z− {0}.

Proof.
(i): res is surjective (exercise, cf. the proof of Proposition 47) and

X∗(T ) ∼= Zr, X∗(S) ∼= Zr−1.

(ii):
“⊂”: ν(t) = 1 =⇒ ν(t)n = 1.
“⊃”: t ∈ (kermν)0 =⇒ ν(t)n = 1, so ν((kermν)0) is connected and finite, hence trivial.

(iii):
“⇐”: Clear from (ii).
“⇒”: Define S = (ker ν1)0 = (ker ν2)0 ⊂ T , as in (i). Clearly, res(ν1) = res(ν2) = 0, so vi ∈ Zµ.
The result follows.
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6.5 Root data.

Definitions 183. A root datum is a quadruple (X,Φ, X∨,Φ∨), where

(i) X,X∨ are free abelian groups of finite rank with a perfect bilinear pairing 〈·, ·〉 : X×X∨ → Z

(ii) Φ ⊂ X and Φ∨ ⊂ X∨ are finite subsets with a bijection Φ→ Φ∨, α 7→ α∨

(the pairing and the bijection also being part of the root datum) satisfying the following axioms:

(1) 〈α, α∨〉 = 2 for all α ∈ Φ

(2) sα(Φ) = Φ and sα∨(Φ∨) = Φ∨ for all α ∈ Φ

where the “reflections” are given by

sα : X → X sα∨ : X∨ → X∨

x 7→ x− 〈x, α∨〉α : y 7→ y − 〈α, y〉α∨

A root datum is reduced if Qα ∩ Φ = {±α} for all α ∈ Φ.

Remark 184. Note that the axioms imply that sα(α) = −α, so Φ = −Φ, and s2
α = 1 (so sα

is a group isomorphism). Similarly, sα∨(α∨) = −α∨, so Φ∨ = −Φ∨, and s2
α∨ = 1. Also 0 6∈ Φ

and 0 6∈ Φ∨, and 〈sα(µ), sα∨(λ)〉 = 〈µ, λ〉. (It is less obvious from the axioms, but also true, that
(−α)∨ = −α∨ and hence that s−α = sα. For more on root data, see SGA3, Exposé XXI.)

Recall that g = t⊕
⊕

α∈Φ gα, Tα = (kerα)0, Gα = ZG(Tα).

Theorem 185.

(i) For all α ∈ Φ, Gα is connected, reductive of semisimple rank 1.

• LieGα = t⊕ gα ⊕ g−α

• dim g±α = 1

• Qα ∩ Φ = {±α}

(ii) Let sα be the unique nontrivial element of W (Gα, T ) ⊂W (G,T ). Then there exists a unique
α∨ ∈ X∗(T ) such that imα∨ ⊂ DGα and 〈α, α∨〉 = 2. Moreover,

sαµ = µ− 〈µ, α∨〉α, for all µ ∈ X∗(T ),

sαλ = λ− 〈α, λ〉α∨, for all λ ∈ X∗(T ).

(iii) Let Φ∨ = {α∨ | α ∈ Φ}. Then (X∗(T ),Φ, X∗(T ),Φ∨) is a reduced root datum.

(iv) W (G,T ) = 〈sα | α ∈ Φ〉.

Proof.
(i). We saw above that Gα is connected, reductive of semisimple rank 1.

LieGα = LieZG(Tα)
100
= zg(Tα) = t⊕

⊕
β∈Φ

β|Tα=1

gβ
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By Proposition 180,
LieGα = t⊕ gα ⊕ g−α

with dim g±α = 1. Hence, for all β ∈ Φ,

β|Tα = 1 ⇐⇒ β ∈ {±α}
⇐⇒ (kerα)0 ⊂ (kerβ)0

⇐⇒ (kerα)0 = (kerβ)0 (dimension considerations)

⇐⇒ β ∈ Qα (Lemma 182)

(ii): Follows from Proposition 180
(iii):
α 7→ α∨ is bijective ( ⇐⇒ injective):
If α∨ = β∨, then

sαsβ(x) = (x− 〈x, β∨〉β)− 〈(x− 〈x, β∨〉β), α∨〉α
= x− 〈x, α∨〉(α+ β) + 〈x, α∨〉〈β, β∨〉α
= x− 〈x, α∨〉(α+ β) + 2〈x, α∨〉α
= x+ 〈x, α∨〉(α− β)

Therefore, if 〈α− β, α∨〉 = 0, then for some n

(sαsβ)n = 1 =⇒ ∀x, x = (sαsβ)n(x) = x+ n〈x, α∨〉(α− β)

=⇒ ∀x, 0 = n〈x, α∨〉(α− β)

=⇒ 0 = α− β
=⇒ α = β

sαΦ = Φ:
The action of sα ∈W on X∗(T ) (and X∗(T )) agrees with the action of sα (and sα∨) in the definition
of a root datum by (ii). Also, as noted above, W = NG(T )/T preserves Φ.

sα∨Φ∨ = Φ∨:
For w = [n] ∈W , (n ∈ NG(T )), β ∈ Φ

wβ(·) = β(n−1(·)n) =⇒ ker(wβ) = n(kerβ)n−1 =⇒ Twβ = nTβn
−1, Gwβ = nGβn

−1

From
im (w(β∨)) = im (nβ∨n−1) ⊂ nDGβn−1 = DGwβ

and
〈wβ,w(β∨)〉 = 〈β, β∨〉 = 2

by (ii), we have that (wβ)∨ = w(β∨). (iii) follows.

(iv): Induct on dimG. Let w = [n] ∈W , n ∈ NG(T ). As in the proof of Theorem 152 consider the
homomorphism

φ : T → T, t 7→ [t, n] = ntn−1t−1.
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imφ 6= T :
S := (kerφ)0 6= 1 is a torus and n ∈ ZG(S). (Note that ZG(S) is connected, reductive by Corollary
164. Its roots are {α ∈ Φ | α|S = 1} and W (ZG(S), T ) ⊂W (G,T ).) If ZG(S) 6= G, we are done by
induction.

If ZG(S) = G, then S ⊂ ZG. Define G = G/S, which is reductive by Lemma 181, and T = T/S,
which is a maximal torus of G. By induction, the (iv) holds for G.

Φ(G,T ) = Φ(G,T ) ⊂ X∗(T ) ⊂ X∗(T ).

It is an easy check that we have

NG(T )/T = W (G,T )
∼→W (G,T ) = NG(T )/T

restricting to
W (Gα, T )

∼→W (Gα, sα 7→ sα.

Therefore, (iv) follows for G.

imφ = T :
φ being surjective is equivalent to

φ∗ : X∗(T )→ X∗(T ), µ 7→ (w−1 − 1)µ

is injective. Hence, w− 1 : V → V is injective, thus bijective, where V = X∗(T )⊗Z R. Fix α ∈ Φ.
Let x ∈ V − {0} be such that α = (w − 1)x. Pick a W -invariant inner product (, ) : V × V → R
(averaging a general inner product over W ). Then

(x, x) = (wx,wx) = (x+ α, x+ α) = (x, x) + 2(x, α) + (α, α) =⇒ 2(x, α) = −(α, α).

Also, sαx = x+ cα (where c = −〈x, α∨〉 ∈ Z) and, as s2
α = 1,

(x, α) + c(α, α) = (sαx, α) = (x, sα(α)) = −(x, α) =⇒ 2(x, α) = −c(α, α)

=⇒ c = 1

=⇒ sαx = x+ α = wx

=⇒ (sαw)x = x.

Therefore, redefining φ with sαw instead of w, we have that imφ 6= T , and we are done by the
previous case.

Remarks 186.
• Let V be the subspace generated by Φ in X⊗R (for X in a root datum). Then Φ is a root system
in V . (See §14.7 in Borel’s Linear Algebraic Groups; references are there.) If V = X ⊗R (which,
in fact, is equivalent to G being semisimple), then (X,Φ) uniquely determines (X,Φ, X∨,Φ∨).
• The root datum of Theorem 185 does not depend (up to isomorphism) on the choice of T , as any
two maximal tori are conjugate.

Facts:
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1. Isomorphism Theorem: Two connected reductive groups are isomorphic ⇐⇒ their root data
are isomorphic.

2. Existence Theorem: Given a reduced root datum, there exists a reductive group that has the
root datum.

(See Springer §9, §10.)

Theorem 187.

(i) For all α ∈ Φ there is a unique connected closed T -stable unipotent subgroup Uα ⊂ G such
that LieUα = gα. There exists an isomorphism uα : Ga

∼→ Uα (unique up to scalar) such that

tuα(x)t−1 = uα(α(t)x) for all x ∈ Ga, t ∈ T .

(ii) G = 〈T, Uα (α ∈ Φ)〉 (i.e., G is the smallest subgroup containing T and all of the Uα)

(iii) ZG =
⋂
α∈Φ kerα

Proof.
(i): Let Bα denote the Borel subgroup of Gα containing T with LieBα = t ⊕ gα (Proposition
180, Theorem 185.) Then Uα := (Bα)u satisfies all assumptions by Proposition 180. Also,
dimUα = dim gα = 1 and Uα ∼= Ga by Theorem 60. Let uα : Ga → Uα denote any isomorphism;
any other differs by a scalar as Aut Ga

∼= Gm. So tuα(x)t−1 = uα(χ(t)x) for some χ(t) ∈ k×. Via

uα, identify Uα
t(·)t−1

−−−−→ Uα with Ga
χ(t)−−→ Ga. Since the derivative of the former is gα

Ad(t)=α(t)−−−−−−−→ gα,

we see that the derivative of the latter is k
α(t)−−→ k. However, by Theorem 78, we must have

α(t) = χ(t) – and thus α = χ.

It remain to show that Uα is unique. If U ′α is another connected, closed, T -stable, and unipotent
with LieU ′α = gα, by the same argument as above we get an isomorphism u′α : Ga → U ′α such that
tu′α(x)t−1 = u′α(α(t)x). Hence, U ′α ⊂ Gα (as α(Tα) = 1).

T normalises U ′α =⇒ TU ′α is closed, connected, and solvable (exercise)

=⇒ TU ′α is contained in a Borel containing T

=⇒ TU ′α ⊂ Bα, as LieU ′α = gα

=⇒ U ′α = (TU ′α)u ⊂ (Bα)u = Uα

=⇒ U ′α = Uα (dimension)

(ii): By Corollary 21, 〈T,Uα (α ∈ Φ)〉 is connected, closed. Its Lie algebra contains t and all of the
gα, hence coincides with g. Thus

dim〈T,Uα (α ∈ Φ)〉 = dim g = dimG =⇒ 〈T,Uα (α ∈ Φ)〉 = G

(iii): ZG ⊂ T by Corollary 164 By (i), t ∈ T commutes with Uα ⇐⇒ α(t) = 1, which implies that
ZG ⊂

⋂
α kerα. The reverse inclusion follows by (ii).
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Appendix. An example: the
symplectic group

Set G = Sp2n = {g ∈ GL2n | gtJg = J}, where J =
(

0 In
−In 0

)
.

Fact. G is connected. (See, for example, Springer 2.2.9(1) or Borel 23.3.2)
Define

T = G ∩D2n = {diag(x1, . . . , x2n) | diag(x1, . . . , x2n) · diag(xn+1, . . . , x2n, x1, . . . , xn) = I}
= {diag(x1, . . . , xn, x

−1
1 , . . . , x−1

n )}
∼= Gn

m

Clearly ZG(T ) = T , implying that T is a maximal torus and rk G = n. Write εi, 1 6 i 6 n, for the
morphisms

T → Gm, diag(x1, . . . , x
−1
n ) 7→ xi,

which form a basis of X∗(T ).

Lemma 188. If ρ : G→ GL(V ) is a faithful (or just injective) G-representation that is semisimple,
then G is reductive.

Proof.
U := RuG is a connected, unipotent, normal subgroup of G. Write V =

⊕r
i=1 Vi with Vi irreducible

(V is semisimple). V U
i 6= 0, as U is unipotent (Proposition 40), and V U

i ⊂ Vi, is G-stable, as U E G:
V U
i = Vi. Hence, U acts trivially on V , and is thus trivial, since ρ is injective.

We will show that the natural faithful representation G ↪→ GL2n is irreducible and hence G is
reductive. Let V = k2n denote the underlying vector space with standard basis (ei)

2n
1 . We have

V =
⊕2n

i=1 kei and, for all t ∈ T ,

tei =

{
εi(t)ei, i 6 n

εi−n(t)−1ei, i > n

Any G-subrepresentation of V is a direct sum of T -eigenspaces; hence, it is enough to show that
NG(T ) acts transitively on the kei, which is equivalent to it acting transitively on {±ε1, . . . ,±εn} ⊂
X∗(T ).

2For another elementary proof, see my post here: http://mathoverflow.net/questions/98881/

connectedness-of-the-linear-algebraic-group-so-n.
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A calculation shows that the elements

gi := diag(Ii−1,
(

0 1
−1 0

)
, In−2,

(
0 1
−1 0

)
, In−i−1), (1 6 i < n)

lie in G, where diag(A1, A2, . . . ) denotes a matrix with square blocks A1, A2, . . . along the diagonal
in the given order. As well

gn :=

(
diag(In−1, 0) Enn
−Enn diag(In−1, 0)

)
,

lies inG, where Enn ∈Mn(k) has a 1 in the (n, n)-entry and 0’s elsewhere. Note that the gi ∈ NG(T )
for all i and gi : εi 7→ εi+1, for 1 6 i < n, and gn : εn 7→ −εn (with gi · εj = εj for i 6= j). Hence,
NG(T ) does act transitively on {±εi}, so V is irreducible and G is reductive.

Lie Algebra:
If ψ : GL2n → GL2n, g 7→ gtJg, then dψ1 : M2n(k)→M2n(k), X 7→ XtJ + JX (as in the proofs of
Propositions 79 and 80). Hence,

g ⊂ {X ∈M2n(X) |XtJ + JX} =: g′.

Checking that
(
A B
C D

)
∈ g′ if and only if Bt = B,Ct = C, and D = −At, we see that

dim g′ = n2 + 2

(
n+ 1

2

)
= n(2n+ 1)

Claim: dimG > n(2n+ 1)
Define

φ : GL2n → A(2n2 ), g 7→ ((gtJg)ij)i<j .

We have φ−1((Jij)i<j) = G, (because gtJg is antisymmetric). (This is still okay when p = 2.) So,

(2n)2 = dim GL2n
87
= dimφ(GL2n) + minimal fibre dimension 6

(
2n

2

)
+ dimG

and

dimG > (2n)2 −
(

2n

2

)
= n(2n+ 1).

Hence,
dim g 6 n(2n+ 1) 6 dimG = dim g =⇒ dim g = n(2n+ 1)

and so
dimG = n(2n+ 1), and g = {X ∈M2n(k) |XtJ + JX = 0}.

Roots:
Write Eij for the (2n)× (2n) matrix with a 1 in the (i, j)-entry and 0’s elsewhere. By the above,

g = t⊕
(⊕

i 6=j
k
(Eij 0

0 −Eji
))
⊕
(⊕

i6j

k
(

0 Eij+Eji
0 0

))
⊕
(⊕

i6j

k
( 0 0
Eij+Eji 0

))
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(with Eij + Eji in the latter factors replaced with Eii if i = j and p = 2). Correspondingly,

Φ = {εi − εj | i 6= j} ∪ {εi + εj | i 6 j} ∪ {−(εi + εj) | i 6 j}

(A check: #Φ = n(n− 1) +
(
n+1

2

)
+
(
n+1

2

)
= 2n2 = dim g− dim t.)

Coroots:
Let ε∗1, . . . , ε

∗
n denote the dual basis, so

ε∗i (x) = diag(1, . . . , x, . . . , x−1, . . . , 1) = diag(Ii−1, x, In−1, x
−1, In−i).

We have
Gεi−εj = G ∩ (D2n + kEij + kEji + kEn+i,n+j + kEn+j,n+i)

and so Gεi−εj is contained in

G∩{I2n+(a−1)Eii+bEij+cEji+(d−1)Ejj+(a′−1)En+i,n+i+b
′En+i,n+j+c

′En+j,n+i+(d′−1)En+j,n+j}

where a, b, c, d, a′, b′, c′, d′ are such that ad− bc = 1 = a′d′ − b′c′. It follows that

(εi − εj)∨ = ε∗i − ε∗j .

Similarly, (εi + εj)
∨ = ε∗i + ε∗j and (−εi − εj)∨ = −ε∗i − ε∗j .

G is semisimple: RG = Z0
G =

(⋂
Φ kerα

)0

= 1.

A Borel subgroup of G: We can explicitly compute a Borel subgroup, for example as explained for
the even orthogonal group in Homework 4 (2017). (For this it would be more convenient to choose
an antidiagonal form J when we define G!)
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