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Abstract. We prove several results concerning the existence of potentially

crystalline lifts of prescribed Hodge–Tate weights and inertial types of a given
representation r : GK → GLn(Fp), where K/Qp is a finite extension. Some

of these results are proved by purely local methods, and are expected to be

useful in the application of automorphy lifting theorems. The proofs of the
other results are global, making use of automorphy lifting theorems.

1. Introduction

Let p be a prime, let K/Qp be a finite extension, and let r : GK → GLn(Fp) be a
continuous representation. For many reasons, it is a natural and important question
to study the lifts of r to de Rham representations r : GK → GLn(Zp); for example,
the de Rham lifts of fixed Hodge and inertial types are parameterised by a universal
(framed) deformation ring thanks to [Kis08], and the study of these deformation
rings is an important step in proving automorphy lifting theorems, going back to
Wiles’ proof of Fermat’s Last Theorem, which made use of Ramakrishna’s work on
flat deformations [Ram02].

It is therefore slightly vexing that (as far as we are aware) it is currently an
open problem to prove that for a general choice of r, a single such lift r exists
(equivalently, to show for each r that at least one of Kisin’s deformation rings is
nonzero). Some results in this direction can be found in the Ph.D. thesis of Alain
Muller [Mul13]. This note sheds little further light on this question, but rather in-
vestigates the question of congruences between de Rham representations of different
Hodge and inertial types; that is, in many of our results we suppose the existence
of a single lift, and see what other lifts (of differing Hodge and inertial types) we
can produce from this. The existence of congruences between representations of
differing such types is conjecturally governed by the (generalised) Breuil–Mézard
conjecture (at least for regular Hodge types; see [EG14]). This conjecture is al-
most completely open beyond the case of GL2 /Qp, so it is of interest to prove
unconditional results.

We prove several such results in this paper, by a variety of different methods.
Some of our results make use of the notion of a potentially diagonalisable Galois
representation, which was introduced in [BLGGT14], and is very important in
automorphy lifting theorems. It is expected ([EG14, Conj. A.3]) that every r admits
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a potentially diagonalisable lift of regular weight1, but this is at present known only
if n ≤ 3 or r is semisimple; see for example [CEG+16, Lem. 2.2], and the proof
of [Mul13, Prop. 2.5.7] for the case n = 3. It seems plausible that these arguments
could be extended to cover other small dimensions, but the case of general n seems
to be surprisingly difficult.

We recall that an n-dimensional de Rham representation of GK is said to have
Hodge type 0 if for any continuous embedding K ↪→ Qp the corresponding Hodge–
Tate weights are 0, 1, . . . , n − 1; while if K/Qp is unramified, a crystalline repre-
sentation of GK is said to be Fontaine–Laffaille if for each continuous embedding
K ↪→ Qp the corresponding Hodge–Tate weights are all contained in an interval of
the form [i, i + p − 2]. We remark that we will normalise Hodge–Tate weights so
that the cyclotomic character ε has Hodge–Tate weight −1.

Our first result is the following theorem, which will be used in forthcoming work
of Arias de Reyna and Dieulefait.

Theorem A. (Cor. 2.3.4) Suppose that K/Qp is unramified, and fix an integer
n ≥ 1. Then there is a finite extension K ′/K, depending only on n and K, with
the following property: if r : GK → GLn(Fp) has a Fontaine–Laffaille lift, then it

also has a potentially diagonalisable lift r : GK → GLn(Zp) of Hodge type 0 with
the property that r|GK′ is crystalline.

In fact this is a special case of a result (Cor. 2.1.11) that holds for a more general
class of representations r that we call peu ramifiée, and with no assumption that
the finite extension K/Qp is unramified. We expect that this result should even
be true without the assumption that r is peu ramifiée, but we do not know how to
prove this; indeed, as mentioned above, we do not know how to produce a single
de Rham lift in general!

To explain why this result is reasonable, and to give some indication of the
proof, we focus on the case that K = Qp and n = 2. Assume for simplicity
in the following discussion that p > 2. One way to see that we should expect
the result to be true (at least if we remove “potentially diagonalisable” from the
statement) is that it is then the local Galois analogue of the well-known statement
that every modular eigenform of level prime to p is congruent to one of weight 2
and bounded level at p. Indeed, via the mechanism of modularity lifting theorems
and potential modularity, it is possible to turn this analogy into a proof. (See
Theorem C below. Since all potentially Barsotti–Tate representations are known
to be potentially diagonalisable, this literally proves Theorem A in this case, but
this deduction cannot be made if n > 2.)

Since these global methods are (at least at present) unable to handle the case
n > 2, a local approach is needed, which we again motivate via the case K = Qp
and n = 2. The possible r : GQp → GL2(Fp) are well-understood; they are either
irreducible representations, in which case they are induced from characters of the
unramified quadratic extension Qp2 of Qp, or they are reducible, and are extensions
of unramified twists of powers of the mod p cyclotomic character ω.

In the first case, the representations are induced from characters of GQp2 which

become unramified after restriction to any totally ramified extension of degree p2−1,
and it is straightforward to produce the required lifts by considering inductions of

1Recall that a de Rham representation of GK is said to have regular weight if for any continuous
embedding K ↪→ Qp, the corresponding Hodge–Tate weights are all distinct.
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potentially crystalline characters of GQp2 which become crystalline over such an

extension; see Lemma 2.1.12. Such representations are automatically potentially
diagonalisable, as after restriction to some finite extension they are even a direct
sum of crystalline characters.

This leaves the case that r is reducible. After twisting, we may assume that r
is an extension of an unramified twist of ω−i by the trivial character, for some
0 ≤ i ≤ p − 2. Then the natural way to lift to characteristic zero and Hodge type
0 is to try to lift to an extension of an unramified twist of ε−1ω̃1−i by the trivial
character, where ω̃ is the Teichmüller lift of ω; this is promising because any such
extension is at least potentially semistable, and becomes semistable over Qp(ζp)
(which is in particular independent of the specific reducible r under consideration),
and if it is potentially crystalline, then it is also potentially diagonalisable (as it is
known that any successive extension of characters which is potentially crystalline
is also potentially diagonalisable).

The problem of producing such lifts is one of Galois cohomology, and Tate’s
duality theorems show that when i 6= 1 there is no obstruction to lifting.2 It is also
easy to check that in this case the lifts are automatically potentially crystalline.
However, when i = 1 the situation is more complicated. Then one can check that
très ramifiée extensions of ω−1 by the trivial character do not lift to extensions
of a non-trivial unramified twist of ε−1 by the trivial character, but only lift to
semistable non-crystalline extensions of ε−1 by the trivial character. However, this
is the only obstruction to carrying out the strategy in this case; and in fact, since
très ramifiée representations do not have Fontaine–Laffaille lifts, the result also
follows in the case i = 1.

We prove Theorem A by a generalisation of this strategy: we write r as an exten-
sion of irreducible representations, lift the irreducible representations as inductions
of crystalline characters, and then lift the extension classes. However, the issues
that arose in the previous paragraph in the case i = 1 are more complicated in
general. To address this, we make use of the following observation: in the case
considered in the previous paragraphs (that is, K = Qp, n = 2, and r has a trivial
subrepresentation), if r is not très ramifiée then it admits “many” reducible crys-
talline lifts; indeed, it can be lifted as an extension by the trivial character of any
unramified twist of ε−i that lifts the corresponding character mod p.

This freedom to twist by unramified characters is in marked contrast to the be-
haviour in the très ramifiée case, and can be exploited in the Galois cohomology
calculations used to produce the potentially crystalline lifts of Hodge type 0. Mo-
tivated by these observations, we introduce a generalisation (Definition 2.1.3) of
the classical notion of peu ramifiée representations, and we prove by direct Galois
cohomology arguments that the peu ramifiée condition allows great flexibility in
the production of lifts to varying reducible representations (see Theorem 2.1.8 and
Corollary 2.1.11).

Conversely, every representation that admits enough lifts of the sort promised
by Theorem 2.1.8 must in fact be peu ramifiée (see Proposition 2.2.4 for a precise
statement); such a representation is said to admit “highly twisted lifts.” We show
that representations that admit Fontaine–Laffaille lifts also admit highly twisted

2This is true even for the ramified self-extensions of the trivial character in the case i =
0, which are not Fontaine–Laffaille, although they are peu ramifiée in the sense of this paper

(Definition 2.1.3).
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lifts (Proposition 2.3.1), and so deduce that Corollary 2.1.11 applies whenever the
residual representation is Fontaine–Laffaille. Theorem A follows.

Using roughly the same purely local methods, we additionally prove the follow-
ing.

Theorem B. (Cor. 2.1.13) Suppose that r : GK → GLn(Fp) is peu ramifiée.
Then r has a crystalline lift of some Serre weight (in the sense of Section 1.2.4).

In contrast to these relatively concrete local arguments, in Section 3 we use global
methods, and in particular the potential automorphy machinery of [BLGGT14].
Our first result is the following, which takes as input a potentially crystalline lift
that could have highly ramified inertial type, or highly spread out Hodge–Tate
weights, and produces a crystalline lift of small Hodge–Tate weights.

Theorem C. (Thm. 3.1.2) Suppose that p - 2n, and that r : GK → GLn(Fp) has a
potentially diagonalisable lift of some regular weight. Then the following hold.

(1) There exists a finite extension K ′/K (depending only on n and K, and not
on r) such that r has a lift r : GK → GLn(Zp) of Hodge type 0 that becomes
crystalline over K ′.

(2) r has a crystalline lift of some Serre weight.

The first part of this result should be contrasted with Theorem A above, while
the second part should be contrasted with Theorem B. For instance, we remark
that it follows from Theorem A (or more precisely, from its more general statement
for peu ramifiée representations) that every peu ramifiée representation r admits a
potentially diagonalisable lift of some regular weight, whereas this latter condition
on r is an input to Theorem C.

If K/Qp is unramified and r admits a lift of extended FL weight (see Section 1.2.4
for this terminology), we also show the following “weak Breuil–Mézard result”.

Theorem D. (Thm. 3.1.5) Suppose that p 6= n, that K/Qp is unramified, and that

r : GK → GLn(Fp) has a crystalline lift of some extended FL weight F . If F is a
Jordan–Hölder factor of σ(λ, τ) for some λ, τ , then r has a potentially crystalline
lift of type (λ, τ).

Since there is no restriction on λ or τ , this result seems to be well beyond
anything that can currently be proved directly using integral p-adic Hodge theory.

If we knew that all potentially crystalline lifts were potentially diagonalisable,
then the special case of Theorem A in which the given Fontaine–Laffaille lift is
regular would be an easy consequence of part (1) of Theorem C (note that the
existence of a regular Fontaine–Laffaille lift implies that p > n). However, we
do not know how to prove that general potentially crystalline representations are
potentially diagonalisable (and we do not have any strong evidence that it should
be true).

1.1. Acknowledgements. We would like to thank Luis Dieulefait for asking a
question which led to us writing this paper, as well as Alain Muller for valuable
discussions.

1.2. Notation and conventions. Fix a prime p, and let K/Qp be a finite exten-
sion with ring of integers OK . Write GK for the absolute Galois group of K, IK for
the inertia subgroup of GK , and FrobK ∈ GK for a choice of geometric Frobenius.
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All representations of GK are assumed without further comment to be continuous.
Write vK for the p-adic valuation on K taking the value 1 on a uniformiser of K, as
well as for the unique extension of this valuation to any algebraic extension of K.

1.2.1. Inertial types. An inertial type is a representation τ : IK → GLn(Qp) with
open kernel which extends to the Weil group WK . We say that a de Rham rep-
resentation r : GK → GLn(Qp) has inertial type τ if the restriction to IK of
the Weil–Deligne representation WD(r) associated to r is equivalent to τ . Given
an inertial type τ , there is a (not necessarily unique) finite-dimensional smooth
irreducible Qp-representation σ(τ) of GLn(OK) associated to τ by the “inertial
local Langlands correspondence”, which we normalise as in [EG14, Conj. 4.1.3].
(Note that there is an unfortunate difference in conventions between this and that
of [EG14, Thm. 4.1.5], but it is this normalisation that is used in the remainder
of [EG14].) We can and do suppose that σ(τ) is defined over Zp.

1.2.2. Hodge–Tate weights and Hodge types. If W is a de Rham representation of
GK over Qp, and κ : K ↪→ Qp, then we will write HTκ(W ) for the multiset of
Hodge–Tate weights of W with respect to κ. By definition, the multiset HTκ(W )

contains i with multiplicity dimQp(W ⊗κ,K K̂(i))GK . Thus for example if ε denotes

the p-adic cyclotomic character of GK , then HTκ(ε) = {−1} for all κ.
We say that W has regular Hodge–Tate weights if for each κ, the elements of

HTκ(W ) are pairwise distinct. Let Zn+ denote the set of tuples (λ1, . . . , λn) of
integers with λ1 ≥ λ2 ≥ · · · ≥ λn. Then if W has regular Hodge–Tate weights,

there is a unique λ = (λκ,i) ∈ (Zn+)HomQp (K,Qp) such that for each κ : K ↪→ Qp,
HTκ(W ) = {λκ,1 + n− 1, λκ,2 + n− 2, . . . , λκ,n},

and we say that W is regular of Hodge type λ.

1.2.3. Representations of GLn and Serre weights. For any λ ∈ Zn+, view λ as a
dominant weight (with respect to the upper triangular Borel subgroup) of the alge-
braic group GLn in the usual way, and let M ′λ be the algebraic OK-representation
of GLn given by

M ′λ := IndGLn
Bn

(w0λ)/OK
where Bn is the Borel subgroup of upper-triangular matrices of GLn, and w0 is the
longest element of the Weyl group (see [Jan03] for more details of these notions,
and note that M ′λ has highest weight λ). Write Mλ for the OK-representation of

GLn(OK) obtained by evaluating M ′λ on OK . For any λ ∈ (Zn+)HomQp (K,Qp) we

write Lλ for the Zp-representation of GLn(OK) defined by

Lλ := ⊗κ:K↪→QpMλκ ⊗OK ,κ Zp.

Let k be the residue field of K. We call isomorphism classes of irreducible Fp-
representations of GLn(k) Serre weights; they can be parameterised as follows. We
say that an element (ai) of Zn+ is p-restricted if p−1 ≥ ai−ai+1 for all 1 ≤ i ≤ n−1,

and we write X
(n)
1 for the set of p-restricted elements. Given any a ∈ X

(n)
1 , we

define the k-representation Pa of GLn(k) to be the representation obtained by

evaluating IndGLn
Bn

(w0a)/k on k, and let Na be the irreducible sub-k-representation
of Pa generated by the highest weight vector (that this is indeed irreducible follows
from the analogous result for the algebraic group GLn, cf. II.2.2–II.2.6 in [Jan03],
and the appendix to [Her09]).
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If a = (aκ,i) ∈ (X
(n)
1 )Hom(k,Fp), write aκ for the component of a indexed by κ ∈

Hom(k,Fp). If a ∈ (X
(n)
1 )Hom(k,Fp) then we define an irreducible Fp-representation

Fa of GLn(k) by

Fa := ⊗κ∈Hom(k,Fp)Naκ ⊗k,κ Fp.
The representations Fa are irreducible, and every Serre weight is (isomorphic to
one) of the form Fa for some a. The choice of a is not unique: one has Fa ∼= Fa′

if and only if there exist integers xκ such that aκ,i − a′κ,i = xκ for all κ, i and,

for any labeling κj of the elements of Hom(k,Fp) such that κpj = κj+1 we have∑f−1
j=0 p

jxκj ≡ 0 (mod pf − 1), where f = [k : Fp]. In this case we write a ∼ a′.
We remark that if K/Qp is unramified and a ∈ (X

(n)
1 )Hom(k,Fp) satisfies aκ,1 −

aκ,n ≤ p− (n− 1) for each κ, then La⊗Zp Fp
∼= Fa as representations of GLn(OK).

The reason is that Pb = Nb whenever b ∈ Zn+ satisfies b1 − bn ≤ p − (n − 1) (cf.
[Jan03, II.5.6]).

1.2.4. Potentially crystalline representations. An element λ ∈ (Zn+)HomQp (K,Qp) is

said to be a lift of an element a ∈ (X
(n)
1 )Hom(k,Fp) if for each κ ∈ Hom(k,Fp) there

exists κκ ∈ HomQp(K,Qp) lifting κ such that λκκ = aκ, and λκ′ = 0 for all other

κ′ 6= κκ in HomQp(K,Qp) lifting κ. If λ is a lift of a, then Fa is a Jordan–Hölder

factor of Lλ ⊗ Fp.
Given a pair (λ, τ), we say that a potentially crystalline representation W of GK

over Qp has type (λ, τ) if it is regular of Hodge type λ, and has inertial type τ . Write

σ(λ, τ) for Lλ⊗Zp σ(τ), a Zp-representation of GLn(OK), and write σ(λ, τ) for the

semisimplification of σ(λ, τ)⊗Zp Fp. Then the action of GLn(OK) on σ(λ, τ) factors

through GLn(k), so that the Jordan–Hölder factors of σ(λ, τ) are Serre weights.
If r : GK → GLn(Fp) has a crystalline lift W of type (λ, 1) (that is, W is

crystalline of Hodge type λ), and λ is a lift of some a ∈ (X
(n)
1 )Hom(k,Fp), then we

say that r has a crystalline lift of Serre weight Fa. This terminology is sensible
because the existence of a crystalline lift of Hodge type λ for some lift λ of a
does not depend on the choice of the element a in its equivalence class under the
equivalence relation ∼ (cf. [GHS15, Lem. 7.1.1]).

If furthermore K/Qp is unramified, and aκ,1−aκ,n ≤ p−1−n for all κ, then we
say that a (or Fa) is an FL weight, and that r has a crystalline lift of FL weight Fa.
If instead aκ,1 − aκ,n ≤ p − n for all κ, then we say that a (or Fa) is an extended
FL weight, and that r has a crystalline lift of extended FL weight Fa.

1.2.5. Potential diagonalisability. Following [BLGGT14], we say that a potentially
crystalline representation r : GK → GLn(Zp) with distinct Hodge–Tate weights is
potentially diagonalisable if for some finite extension K ′/K, r|GK′ is crystalline, and

the corresponding Qp point of the corresponding crystalline deformation ring lies
on the same irreducible component as some direct sum of crystalline characters.
(For example, it follows from the main theorem of [GL14] that any crystalline
representation of extended FL weight is potentially diagonalisable.)

2. Local existence of lifts in the residually Fontaine–Laffaille case

2.1. Peu ramifiée representations. Recall that for any discrete GK-module X,
the space H1

ur(GK , X) of unramified classes in H1(GK , X) is the kernel of the
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restriction map H1(GK , X) → H1(IK , X); by the inflation-restriction sequence,
this is the same as the image of the inflation map H1(GK/IK , X

IK ) ↪→ H1(GK , X).
We will make use of the following well-known fact.

Lemma 2.1.1. Suppose that X is a discrete GK-module that is moreover a finite-
dimensional vector space over a field F. Then

dimFH
1
ur(GK , X) = dimFH

0(GK , X).

Proof. We have

dimFH
1(GK/IK , X

IK ) = dimFH
0(GK/IK , X

IK ) = dimFH
0(GK , X),

the first equality coming from the fact that Hi(GK/IK , X
IK ) for i = 0, 1 are,

respectively, the invariants and co-invariants of XIK under FrobK − 1. �

Definition 2.1.2. Suppose that K/Qp is a finite extension and F is a field of char-

acteristic p. Consider a representation r : GK → GLn(F), let V be the underlying
F[GK ]-module of r, and suppose that 0 = U0 ⊂ U1 ⊂ · · · ⊂ U ` = V is an increas-
ing filtration on V by F[GK ]-submodules. Write V i := U i/U i−1. We say that r
is peu ramifiée with respect to the filtration {U i} if for all 1 ≤ i ≤ ` the class in
H1(GK ,HomF(V i, U i−1)) defined by U i (regarded as an extension of V i by U i−1)
is annihilated under Tate local duality by H1

ur(GK ,HomF(U i−1, V i(1))).

Since group cohomology is compatible with base change for field extensions, so
is Definition 2.1.2: that is, if F′/F is any field extension, then r is peu ramifiée with
respect to some filtration {U i} if and only if r⊗F F′ is peu ramifiée with respect to
the filtration {U i ⊗F F′}.

Definition 2.1.2 is most interesting in the case where the filtration {U i} is sat-
urated, i.e., where the graded pieces V i are irreducible. (For instance, any r will
trivially be peu ramifiée with respect to the one-step filtration 0 = U0 ⊂ U1 = V .)
This motivates the following further definition.

Definition 2.1.3. We say that r is peu ramifiée if there exists a saturated filtration
{U i} with respect to which r is peu ramifiée as in Definition 2.1.2.

Examples 2.1.4.

(1) If n = 2 and r ∼=
(
χω ∗
0 χ

)
for some character χ, then Definition 2.1.3 co-

incides with the usual definition of peu ramifiée. (Recall that ω denotes the
mod p cyclotomic character.) Indeed, the duality pairing H1(GK ,Fp(1))×
H1(GK ,Fp)→ Qp/Zp can be identified (via the Kummer and Artin maps)
with the evaluation map

K×/(K×)p ×Hom(K×,Fp)→ Fp ↪→ Qp/Zp,

from which it is immediate that the classes in H1(GK ,Fp(1)) that are
annihilated by H1

ur(GK ,Fp) are precisely those which are identified with
O×K/(O

×
K)p by the Kummer map.

(2) If r is semisimple then trivially r is peu ramifiée.
(3) If there are no nontrivial GK-maps U i−1 → V i(1) for any i (e.g. if one has

V j 6∼= V i(1) for all j < i) then r is necessarily peu ramifiée because by

Lemma 2.1.1 we have H1
ur(GK ,HomF(U i−1, V i(1))) = 0.
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(4) Suppose K/Qp is unramified. We will prove in Section 2.3 that Fontaine–
Laffaille representations are peu ramifiée, so that all of the main results in
this section will apply to Fontaine–Laffaille representations.

Example 2.1.5. If r is peu ramifiée, it is natural to ask whether r is peu ramifiée
with respect to every (saturated) filtration on r. This is not the case. Suppose, for
instance, that K does not contain the p-th roots of unity (so ω 6= 1) and

r ∼=

ω ∗1 ∗2
1 0

1


where the class of the cocycle ∗1 is nontrivial and peu ramifiée, and the cocycle ∗2
is très ramifiée. For the filtration on r in which U i is the span of the first i vectors
giving rise to the above matrix representation (so that the action of GQp on U i is
given by the upper-left i × i block), the representation r is peu ramifiée. This is
clear at the first two steps in the filtration, and for the third step one notes (as in
Example 2.1.4(3)) that there are no nontrivial maps U2 → V 3(1).

On the other hand, if one defines a new filtration on r by replacing U2 with the
span of the first and third basis vectors giving rise to the above matrix representa-
tion, then r is not peu ramifiée with respect to the new filtration, because the new
U2 is très ramifiée.

Remark 2.1.6. One consequence of the preceding example is that the collection of
peu ramifiée representations is not closed under taking arbitrary subquotients. On
the other hand, if r is peu ramifiée with respect to the filtration {U i}, then for any
a ≤ b it is not difficult to check that U b/Ua is peu ramifiée with respect to the
induced filtration {Ua+i/Ua}0≤i≤b−a.

Using the preceding example one can similarly see that the collection of peu
ramifiée representations is not closed under contragredients.

Remark 2.1.7. In some sense we are making an arbitrary choice by demanding that
we first lift U1, then to U2, then to U3, and so forth. One could equally well lift
in other orders, and as Example 2.1.5 shows, this can make a difference. However,
since Definition 2.1.2 will suffice for our purposes, we do not elaborate further on
this point.

We say that a Zp-lift of an Fp[GK ]-module V is a Zp[GK ]-module V that is free

as a Zp-module, together with a Fp[GK ]-isomorphism V ⊗Zp Fp ∼= V . We have

introduced the notion of a peu ramifiée representation (Definition 2.1.2) in order
to prove the following result, to the effect that peu ramifiée representations have
many Zp-lifts.

Theorem 2.1.8. Suppose that K/Qp is a finite extension. Consider a representa-

tion r : GK → GLn(Fp) that is peu ramifiée with respect to the increasing filtration

{U i}, so that r may be written as

r =

V 1 . . . ∗
. . .

...
V `

 ,

where the V i := U i/U i−1 are the graded pieces of the filtration.
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For each i, suppose that we are given a Zp-representation Vi of GK lifting V i.
Then there exist unramified characters ψ1, . . . , ψ` with trivial reduction such that r
may be lifted to a representation r of the form

r =

V1 ⊗ ψ1 . . . ∗
. . .

...
V` ⊗ ψ`

 .

More precisely, r is equipped with an increasing filtration {Ui} by Zp-direct sum-

mands such that Ui/Ui−1 ∼= Vi ⊗ ψi and r ⊗Zp Fp
∼= r induces Ui ⊗Zp Fp

∼= U i, for

each 1 ≤ i ≤ `.
In fact, there are infinitely many choices of characters (ψ1, . . . , ψ`) for which this

is true, in the strong sense that for any 1 ≤ i ≤ `, if (ψ1, . . . , ψi−1) can be extended
to an `-tuple of characters for which such a lift exists, then there are infinitely many
choices of ψi such that (ψ1, . . . , ψi) can also be extended to such an `-tuple.

Proof. We proceed by induction on `, the case ` = 1 being trivial. From the
induction hypothesis, we can find ψ1, . . . , ψ`−1 so that U := U `−1 can be lifted to
some

U :=

V1 ⊗ ψ1 . . . ∗
. . .

...
V`−1 ⊗ ψ`−1

 .

as in the statement of the theorem. It suffices to prove that for each such choice
of ψ1, . . . , ψ`−1, there exist infinitely many choices of ψ` for which r lifts to an
extension of V` ⊗ ψ` by U as in the statement of the theorem.

Choose the field E/Qp large enough so that U and V` are realisable over OE ,
and so that r is realisable over the residue field of E. Suppose that F/E is a
finite extension with ramification degree e(F/E) > (dimV `)(dimU), write O for
the integers of F and F for its residue field, and let ψ : GK → O× be an unramified
character such that 0 < vE(ψ(FrobK)− 1) < 1/(dimV `)(dimU). In the remainder
of this argument, when we write U and V` we will mean their (chosen) realisations
over O, and similarly U and V ` will mean their realisations over F obtained by
reduction from U and V`.

Extensions of V`⊗ψ by U correspond to elements of H1(GK ,HomO(V`⊗ψ,U)),
while r corresponds to an element c of Ext1F[GK ](V `, U), which we identify with

H1(GK ,HomF(V `, U)). By hypothesis (together with the remark about base change
immediately following Definition 2.1.2) the class c is annihilated byH1

ur(GK ,HomF(U, V `(1)))
under Tate local duality. Taking the cohomology of the exact sequence

0→ HomO(V` ⊗O ψ,U)
$→ HomO(V` ⊗O ψ,U)→ HomF(V `, U),

we have in particular an exact sequence

H1(GK ,HomO(V`⊗Oψ,U))→ H1(GK ,HomF(V `, U))
δ→ H2(GK ,HomO(V`⊗Oψ,U)),

so it is enough to check that that c ∈ ker(δ) except for finitely many choices of ψ.
From Tate duality, we have the dual map

H0(GK ,HomO(U, V`(1)⊗O ψ)⊗ F/O)
δ∨→ H1(GK ,HomF(U, V `(1)).

As ker(δ)⊥ = im(δ∨), it is enough to show that im(δ∨) is contained inH1
ur(GK ,HomF(U, V `(1)))

except, again, for possibly finitely many choices of ψ. Letting X = HomO(U, V`(1)),
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we first claim that (X ⊗O O(ψ))GK = 0 for all but finitely many choices of ψ. In-
deed, if

(X ⊗O O(ψ))GK = HomO[GK ](U, V`(1)⊗O ψ) 6= 0

then we must have W ∼= Z(1) ⊗O ψ for some Jordan–Hölder factor W of U and
Z of V`. This can happen for only finitely many choices of ψ (by determinant
considerations applied to each of the finitely many pairs W,Z). Now we are done
by the following proposition. �

Proposition 2.1.9. Let F/Qp be a finite extension with ring of integers O and
residue field F. Let X be an O[GK ]-module that is free of finite rank as an O-module.
Suppose that there is a field lying E lying between F and Qp such that X is realisable
over OE and with ramification index e(F/E) > rankO(X). Let ψ : GK → O× be
an unramified character such that 0 < vE(ψ(FrobK)− 1) < 1/ rankO(X).

Assume further that (X ⊗O O(ψ))GK = 0. Then the image of

δ∨ : H0(GK , (X ⊗O O(ψ))⊗O F/O)→ H1(GK , X ⊗O F)

is equal to the subspace of unramified classes, and in particular depends only on
X ⊗O F, and not on X, F , or ψ.

Proof. The statement is unchanged upon replacing E with the maximal unramified
extension Eur of E contained in F . We are therefore reduced to the case where
F/E is totally ramified (so that in particular F is also the residue field of E).

Let XOE be a realisation of X over OE . Write X = XOE ⊗OE F = X ⊗O F and
Xψ = XOE ⊗OE O(ψ). The inclusion ι : XOE ↪→ Xψ sending x 7→ x⊗ 1 is a map of

OE-modules inducing an isomorphism of F[GK ]-modules X ∼= Xψ ⊗O F. Moreover
for any g ∈ GK and x ∈ XOE we have g · ι(x) = ψ(g)(ι(g · x)), so that the map ι is
at least IK-linear.

Define α = ψ(FrobK)−1 − 1 and write N = FrobK − 1, which acts on X
IK

with

kernel ker(N) = X
GK

. We have an isomorphism

H1(GK/IK , X
IK

) ∼= X
IK
/NX

IK

induced by evaluation at FrobK . Note that any class in this quotient space has a

representative in ∪∞i=0 ker(N i), as can be seen for example by writing X
IK

= Y ⊕Z
with N nilpotent on Y and invertible on Z. Hence to see that the image of δ∨

contains all unramified classes, it suffices to exhibit for f ∈ ∪∞i=0 ker(N i) an element

ef ∈ (Xψ ⊗O F/O)GK such that δ∨(ef ) = [f ] in H1(GK/IK , X
IK

).

Suppose then that f ∈ ∪∞i=0 ker(N i) is nonzero. Let i ≥ 0 be the largest integer

such that N if 6= 0, and let f i := f . For each 0 ≤ j ≤ i let fj ∈ XOE be a lift of

N i−jf i, and define

f∗ =

i∑
j=0

αj · ι(fj) ∈ Xψ.

Since f j ∈ X
IK

, it follows that for g ∈ IK we have g(fj) ≡ fj (mod $EXOE ) with
$E ∈ OE a uniformiser, and so also g(f∗) ≡ f∗ (mod $EXψ).

Now let us compute (FrobK − 1)(f∗). Noting that (FrobK − 1)fj ≡ fj−1
(mod $EXOE ), with f−1 := 0, and recalling that (1+α)(FrobK ·ι(x)) = ι(FrobK ·x),
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we have

(1 + α)(FrobK(f∗)− f∗) =

i∑
j=0

αjι(FrobK(fj))− (1 + α)

i∑
j=0

αjι(fj)

=

i∑
j=0

αjι((FrobK − 1)fj)−
i∑

j=0

αj+1ι(fj)

≡
i∑

j=0

αjι(fj−1)−
i∑

j=0

αj+1ι(fj) (mod $EXψ)

≡ −αi+1ι(fi) (mod $EXψ).

Note that N i+1f i = 0 and N if i 6= 0, so that i + 1 ≤ dimFX
IK ≤ rankOX.

Therefore vE(αi+1) < 1, and we deduce that g(f∗) ≡ f∗ (mod αi+1Xψ) for all
g ∈ GK , or in other words f∗ ⊗ α−i−1 ∈ (Xψ ⊗ F/O)GK .

Furthermore, if cf := δ∨(f∗ ⊗ α−i−1) ∈ H1(GK , X), then cf (g) is by definition

the image in X of α−i−1(g(f∗)−f∗). So on the one hand cf is unramified (because

vE(αi+1) < vE($E) = 1), while on the other hand cf (FrobK) = −f i. Thus we can

take ef := −f∗ ⊗ α−i−1, and we have shown that H1(GK/IK , X
IK

) ⊂ im δ∨.

On the other hand, since XGK
ψ is assumed to be trivial, we have that (Xψ ⊗

F/O)GK is of finite length; so if $F is a uniformiser of F , then

dim(im δ∨) = dim((Xψ ⊗ F/O)GK/$F )

= dim((Xψ ⊗ F/O)GK [$F ]) = dimX
GK

= dim(kerN).

On the other hand dim(kerN) = dim(cokerN) = dimH1(GK/IK , X
IK

), and the
result follows. �

Theorem 2.1.8 implies the following result on the existence of certain potentially
crystalline Galois representations.

Proposition 2.1.10. Suppose that K/Qp is a finite extension. Consider a rep-

resentation r : GK → GLn(Fp) that is peu ramifiée with respect to the increasing

filtration {U i}, so that r may be written as

r =

V 1 . . . ∗
. . .

...
V `

 ,

where the V i := U i/U i−1 are the graded pieces of the filtration.
For each i, suppose that we are given a Zp-representation Vi of GK lifting V i

such that:

• each Vi is potentially crystalline, and
• for each 1 ≤ i < ` and each κ : K ↪→ Qp, every element of HTκ(Vi+1) is

strictly greater than every element of HTκ(Vi).
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Then r may be lifted to a potentially crystalline representation r of the form

r =

V1 ⊗ ψ1 . . . ∗
. . .

...
V` ⊗ ψ`

 ,

where each ψi is an unramified character with trivial reduction, and if K ′/K is a
finite extension such that each Vi|GK′ is crystalline, then r|GK′ is also crystalline.

In fact, there are infinitely many choices of characters (ψ1, . . . , ψ`) for which this
is true, in the strong sense that for any 1 ≤ i ≤ `, if (ψ1, . . . , ψi−1) can be extended
to an `-tuple of characters for which such a lift exists, then there are infinitely many
choices of ψi such that (ψ1, . . . , ψi) can also be extended to such an `-tuple.

Proof. This follows from Theorem 2.1.8 along with standard facts about extensions
of de Rham representations. Indeed, by [Nek93, Prop. 1.28(2)] and our assumption
on the Hodge–Tate weights of the Vi, the representation r|GK′ is semistable for
any r as in Theorem 2.1.8 and any K ′ as above. Then by repeated application
of the third part of [Nek93, Prop. 1.24(2)], as well as [Nek93, Prop. 1.26], this
semistable representation is guaranteed to be crystalline as long as there is no GK′ -
equivariant surjection (Vj⊗V ∗i )(ψjψ

−1
i ) � ε for any j < i. Once ψ1, . . . , ψi−1 have

been determined, this can be arranged by avoiding finitely many possibilities for
ψi. �

We give two sample applications of Proposition 2.1.10. The following Corollary
will be used in forthcoming work of Arias de Reyna and Dieulefait (in the special
case where r is Fontaine–Laffaille and the Hodge type λ is 0).

Corollary 2.1.11. Fix an integer n ≥ 1. Then there is a finite extension K ′/K,
depending only on n, with the following property: if r : GK → GLn(Fp) is peu

ramifiée and λ = (λκ,i) ∈ (Zn+)HomQp (K,Qp), then r has a potentially diagonalisable

lift r : GK → GLn(Zp) that is regular of Hodge type λ, with the property that r|GK′
is crystalline.

Proof. Write r as in Proposition 2.1.10 with V i irreducible for all i, and set di =
dimFp U i. By Proposition 2.1.10 and [BLGGT14, Lem. 1.4.3], it is enough to show

that there is a finite extension K ′/K depending only on n, with the property that
we may lift each V i to a potentially crystalline representation Vi, such that for all
i, κ the set HTκ(Vi) is equal to {λκ,n−j + j : j ∈ [di−1, di−1]}, with the additional
property that Vi|GK′ is isomorphic to a direct sum of crystalline characters. This
is immediate from Lemma 2.1.12 below. �

Lemma 2.1.12. Let d ≥ 1 be an integer. Let Kd be the unramified extension of
K of degree d, and define L to be any totally ramified extension of Kd of degree
|k×d |, where kd is the residue field of Kd. Let r : GK → GLd(Fp) be an irreducible
representation. Then for any collection of multisets of d integers {hκ,1, . . . , hκ,d},
one for each continuous embedding κ : K ↪→ Qp, there is a lift of r to a representa-

tion r : GK → GLd(Zp), such that r|GL is isomorphic to a direct sum of crystalline
characters, and for each κ we have HTκ(r) = {hκ,1, . . . , hκ,d}.

Proof. Since r is irreducible, we can write r ∼= IndGKGKd
ψ, and ψ : GKd → F×p is a

character. Choose a crystalline character χ : GKd → Q×p with the property that
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for each continuous embedding κ : K ↪→ Qp we have⋃
κ̃|K=κ

HTκ̃(χ) = {hκ,1, . . . , hκ,d},

where the union is taken as multisets. (That such a character exists is well-known;

see e.g. [Ser79, §2.3, Cor. 2].) If we let θ : GKd → Z×p be the Teichmüller lift of

ψχ−1, then we may take r := IndGKGKd
χθ, which has the correct Hodge–Tate weights

by [GHS15, Cor. 7.1.3]. (Note that gθ|GL is unramified for any g ∈ GK .) �

As a second application of Proposition 2.1.10, we show that each peu ramifié
representation has a crystalline lift of some Serre weight.

Corollary 2.1.13. Suppose that K/Qp is a finite extension, and that r : GK →
GLn(Fp) is peu ramifiée. Then r has a crystalline lift of some Serre weight.

Proof. When r is irreducible, this is straightforward from [GHS15, Thm B.1.1].
(One only has to note that when r is irreducible, an obvious lift of r in the termi-
nology of [GHS15, §7] is always an unramified twist of a true lift of r.)

In the general case, suppose that r is peu ramifiée with respect to the filtration
{U i}, and as usual set V i := U i/U i−1. By the previous paragraph, for each V i we
are able to choose a crystalline lift Vi of some Serre weight. By an argument as in
the fourth paragraph of the proof of [GHS15, Thm B.1.1] it is possible to arrange
that every element of HTκ(Vi+1) is strictly greater than every element of HTκ(Vi),
and that ⊕iVi is a crystalline lift of ⊕iV i of some Serre weight. (This is just a
matter of replacing each Vi with a twist by a suitably-chosen crystalline character
of trivial reduction.) Now the Corollary follows directly from Proposition 2.1.10
(with K ′ = K). �

2.2. Highly twisted lifts. In this section we give a criterion (Proposition 2.2.4)
for checking that a representation is peu ramifiée, which we will apply to show in
Section 2.3 that Fontaine–Laffaille representations are peu ramifiée.

Definition 2.2.1. Suppose that K/Qp is a finite extension. Consider a repre-

sentation r : GK → GLn(Fp), let V be the underlying Fp[GK ]-module of r, and

suppose that 0 = U0 ⊂ U1 ⊂ · · · ⊂ U ` = V is an increasing filtration on V by
Fp[GK ]-submodules. Denote V i := U i/U i−1 for 1 ≤ i ≤ `, the graded pieces of the
filtration.

We say that r admits highly twisted lifts with respect to the filtration {U i} if there
exist Zp-lifts Vi of the V i, and a family of Zp-lifts V (ψ1, . . . , ψ`) of V indexed by

a nonempty set Ψ of `-tuples of unramified characters ψi : GK → Z×p with trivial
reduction modulo mZp , having the following additional properties:

• Each V (ψ1, . . . , ψ`) is equipped with an increasing filtration {U(ψ1, . . . , ψ`)i}
by Zp[GK ]-submodules that are Zp-direct summands.
• We have U(ψ1, . . . , ψ`)i/U(ψ1, . . . , ψ`)i−1 ∼= Vi ⊗ ψi for each 1 ≤ i ≤ `.
• The isomorphism V (ψ1, . . . , ψ`)⊗ZpFp

∼= V induces isomorphisms U(ψ1, . . . , ψ`)i⊗Zp
Fp ∼= U i for each 1 ≤ i ≤ `.
• U(ψ1, . . . , ψ`)i depends up to isomorphism only on ψ1, . . . , ψi (that is, it

does not depend on ψi+1, . . . , ψ`).
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• For each (ψ1, . . . , ψi) that extends to an element of Ψ and for each ε > 0,
there exists ψi+1 such that (ψ1, . . . , ψi+1) extends to an element of Ψ, with
the further property that 0 < vQp(ψi+1(FrobK)− 1) < ε.

If moreover the set Ψ can be taken to be the set of all `-tuples of unramified

characters ψi : GK → Z×p with trivial reduction modulo mZp , we say that r admits

universally twisted lifts with respect to the filtration {U i}.

As with Definition 2.1.2, the preceding definition is most interesting in the case
where the filtration {U i} is saturated, and so we make the following further defini-
tion.

Definition 2.2.2. We say that r admits highly (resp. universally) twisted lifts if it
admits highly (resp. universally) twisted lifts as in Definition 2.2.1 with respect to
some saturated filtration.

Remark 2.2.3. It is natural to ask whether, if r admits highly (resp. universally)
twisted lifts with respect to some saturated filtration as in Definition 2.2.2, it admits
highly (resp. universally) twisted lifts with respect to any such filtration. Propo-
sition 2.2.4 below, in combination with Example 2.1.5, gives a negative answer to
this question in the highly twisted case.

In fact, Example 2.1.5 also shows that the above question has a negative answer
in the universally twisted case. Suppose for simplicity that K/Qp is unramified
and that p > 2. Then r in Example 2.1.5 admits universally twisted lifts for
the first filtration considered there. To see this, we first note that the first block

U2 =

(
ω ∗1

1

)
admits universally twisted lifts for V1 = ε and V2 = 1 by Proposi-

tion 2.3.1 below, because U2 is Fontaine–Laffaille. Since there is no nontrivial map
U2 → V 3(1), one easily checks that r̄ admits universally twisted lifts for this filtra-
tion. However, r does not admit universally twisted lifts for the second filtration

considered in Example 2.1.5. This is because the first block U
′
2 =

(
ω ∗2

1

)
does

not admit universally twisted lifts (e.g. by Proposition 2.2.4).

Proposition 2.2.4. Let K/Qp be a finite extension, and let {U i} be an increasing

filtration on the representation r : GK → GLn(Fp). Then r is peu ramifiée with

respect to {U i} if and only if it admits highly twisted lifts with respect to {U i}.

Proof. An inspection of the proof of Theorem 2.1.8 already gives the “only if”
implication (for any choice of Vi’s lifting V i).

For the other direction, we assume that r admits highly twisted lifts with respect
to the filtration {U i} and some Zp-lifts Vi of the V i. We proceed by induction on
`, the length of the filtration. By the induction hypothesis we may assume that for
all i < ` the class in H1(GK ,HomF(V i, U i−1)) defined by U i is annihilated under
Tate local duality by H1

ur(GK ,HomF(U i−1, V i(1))), and it remains to prove this for
i = `. Choose any (ψ1, . . . , ψ`−1) that extends to an element of the set Ψ (as in
Definition 2.2.1 for r), and let U := U(ψ1, . . . , ψ`)`−1 (where ψ` is any character
such that (ψ1, . . . , ψ`) ∈ Ψ); note that this is independent of ψ`.

Let S be the set of characters ψ : GK → Z×p such that (HomZp(U, V`(1)) ⊗Zp
Zp(ψ))GK 6= 0. As in the proof of Theorem 2.1.8 we see that S is finite. Let
E/Qp be a finite extension such that U and V` are realisable over OE . It follows
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from the highly twisted lift condition on r that there exists ψ` having the following
properties:

(i) (ψ1, . . . , ψ`) ∈ Ψ,
(ii) ψ` 6∈ S, and
(iii) 0 < vE(ψ`(FrobK)− 1) < 1/(dimU `−1)(dimV `).

Let F/E be a finite extension over which ψ` and V (ψ1, . . . , ψ`) are both re-
alisable. Write O for the ring of integers of F , and F for its residue field. For
the remainder of this proof, when we write U , V`, ψ` we will mean their chosen
realisations over F , and similarly for U , V ` over F (obtained by reduction).

Set X = HomO(U, V`(1)). As in the proof of Theorem 2.1.8, write δ for the
connection map

H1(GK ,HomF(V `, U))
δ→ H2(GK ,HomO(V` ⊗O ψ`, U)).

The existence of the lift V (ψ1, . . . , ψ`) (i.e. the property (i) of ψ`) shows that the
class c ∈ H1(GK ,HomF(V `, U)) defining r lies in ker(δ). On the other hand, the
properties (ii) and (iii) of ψ` mean that Proposition 2.1.9 applies (with ψ` playing
the role of ψ) to show that the dual map δ∨ has image H1

ur(GK , X ⊗O F). Since
c ∈ ker(δ) it is annihilated under Tate local duality by this image, and we deduce
that r is peu ramifiée. �

Corollary 2.2.5. Suppose that r admits highly twisted lifts with respect to the
filtration {U i}. Then r satisfies the definition of admitting highly twisted lifts with
respect to the filtration {U i} for any lifts Vi of the V i.

Proof. This is immediate from Proposition 2.2.4 along with the first sentence of its
proof. �

Remark 2.2.6. The above corollary fails if we replace ‘highly twisted’ with ‘univer-
sally twisted’. For instance, consider Example 2.1.4(1) with K/Qp unramified, the
extension class ∗ peu ramifiée, and χ = 1. It admits universally twisted lifts if we
set V1 = ε and V2 = 1. (This will follow from Proposition 2.3.1 below.) But it does
not admit universally twisted lifts for V1 = εp and V2 = 1.

Remark 2.2.7. We do not know whether there exist representations that admit
highly twisted lifts but not universally twisted lifts.

2.3. Fontaine–Laffaille representations. In this section we will prove that rep-
resentations which admit a Fontaine–Laffaille lift also admit universally twisted
lifts, and so by Proposition 2.2.4 are peu ramifiée. We begin by recalling the for-
mulation of unipotent Fontaine–Laffaille theory in [DFG04, §1.1.2]. Throughout
this section let K/Qp be a finite unramified extension with integer ring OK , and
write Frobp for the absolute geometric Frobenius on K.

Let O be the ring of integers in E, a finite extension of Qp with residue field F.
We assume that E is sufficiently large as to contain the image of some (hence
any) continuous embedding of K into an algebraic closure of E. Fix an integer

0 ≤ h ≤ p− 1, and let MFhO denote the category of finitely generated OK ⊗Zp O-
modules M together with

• a decreasing filtration FilsM byOK⊗ZpO-submodules which areOK-direct

summands with Fil0M = M and Filh+1M = {0};
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• and Frob−1p ⊗ 1-linear maps Φs : FilsM → M with Φs|Fils+1M = pΦs+1

and
∑
s Φs(FilsM) = M .

We say that an object M ofMFp−1O is étale if Filp−1M = M , and defineMFp−1,uO
to be the full subcategory of MFp−1O consisting of objects with no nonzero étale

quotients. Such objects are said to be unipotent. Note thatMFp−2O is a subcategory

of MFp−1,uO .

In the following paragraphs, letMFO denote eitherMFhO (for 0 ≤ h ≤ p−2) or

MFp−1,uO (for h = p− 1). Let RepO(GK) denote the category of finitely generated
O-modules with a continuous GK-action. There is an exact, fully faithful, covariant
functor of O-linear categories TK : MFO → RepO(GK). This is the functor
denoted V in [DFG04, §1.1.2]. The essential image of TK is closed under taking
subquotients. If M is an object of MFO, then the length of M as an O-module is
[K : Qp] times the length of TK(M) as an O-module.

LetMFF denote the full subcategory ofMFO consisting of objects killed by the
maximal ideal of O and let RepF(GK) denote the category of finite F-modules with
a continuous GK-action. Then TK restricts to a functorMFF → RepF(GK). If M
is an object of MFF and κ is a continuous embedding K ↪→ Qp, we let FLκ(M)

denote the multiset of integers i such that gr iM ⊗OK⊗ZpO,κ⊗1 O 6= {0} and i is
counted with multiplicity equal to the F-dimension of this space. If M is a p-torsion
free object of MFO then TK(M) ⊗Zp Qp is crystalline and for every continuous

embedding κ : K ↪→ Qp we have

HTκ(TK(M)⊗Zp Qp) = FLκ(M ⊗O F).

Moreover, if Λ is a GK-invariant lattice in a crystalline representation V of GK
with all its Hodge–Tate numbers in the range [0, h], having (when h = p − 1) no
nontrivial quotient isomorphic to a twist of an unramified representation by ε−(p−1),
then Λ is in the essential image of TK . If some twist of r : GK → GLn(F) lies in

the essential image of TK on MFp−2O , we say that r admits a Fontaine–Laffaille

lift, while if some twist of r lies in the essential image of TK on MFp−1,uO we say
that it admits a unipotent extended Fontaine–Laffaille lift.

The proof of the following result is essentially the same as that of [BLGGT14,
Lem. 1.4.2]. (We remark that [BLGGT14, §1.4] uses the formulation of Fontaine–
Laffaille theory as [CHT08, §2.4.1], which in fact is equivalent to that of [DFG04,

§1.1.2] (at least on MFp−2O ), although this equivalence is not needed for the fol-
lowing argument.)

Proposition 2.3.1. Let K/Qp be unramified. Consider a representation r : GK →
GLn(Fp) with an increasing filtration {U i} such that U0 = 0 and U ` = r, so that r
may be written as

r =

V 1 . . . ∗
. . .

...
V `

 ,

where the V i = U i/U i−1 are the graded pieces of the filtration.
Suppose that r admits a Fontaine–Laffaille (resp. unipotent extended Fontaine–

Laffaille) lift. Then r admits universally twisted lifts with respect to the filtration
{U i}; indeed, it admits universally twisted Fontaine–Laffaille (resp. unipotent ex-
tended Fontaine–Laffaille) lifts. In either case r is peu ramifiée.
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Remark 2.3.2. By duality, the same result holds when r admits a nilpotent extended
Fontaine–Laffaille lift, i.e., if some twist of r lies in the essential image of TK
on MFp−1,nO , the full subcategory of MFp−1O whose objects admit no nonzero

subobject M with Fil1M = 0. We refer the reader to [GL14] for a further discussion
of nilpotent Fontaine–Laffaille theory.

Similar arguments (which we omit to keep the paper at a reasonable length) can
be used to show that the same result holds when r is finite flat (for arbitrary K/Qp;
in this case the argument uses Kisin modules).

Proof of Proposition 2.3.1. Since the truth of this proposition for r evidently im-
plies its truth for any twist of r (using the fact that every character of GK admits
a crystalline lift), we reduce to the case that r lies in the essential image of TK on

MFp−2O (or on MFp−1,uO , in the unipotent extended case).

The case that each V i is one-dimensional is essentially found in [BLGGT14, Lem.
1.4.2] and, as previously remarked, we will follow the proof of that result closely.
We can and do suppose that r is defined over some finite field F, and we fix a finite
extension E of Qp with ring of integers O and residue field F.

Let V be the underlying F-vector space of r, and let M denote the object of
MFF corresponding to V , which exists by our assumption that r has a (possibly
unipotent extended) Fontaine–Laffaille lift. Then we have a filtration

M = M ` ⊃M `−1 ⊃ · · · ⊃M1 ⊃M0 = (0)

byMFF-subobjects such that M i corresponds to U i and so M i/M i−1 corresponds
to V i. Then we claim that we can find an object M of MFO which is p-torsion
free together with a filtration by MFO-subobjects

M = M` ⊃M`−1 ⊃ · · · ⊃M1 ⊃M0 = (0)

and an isomorphism
M ⊗O F ∼= M

under which Mi ⊗O F maps isomorphically to M i for all i.
Write di := dimV i. We note first that M has an F-basis ei,κ for i = 1, . . . , n

and κ ∈ HomQp(K,Qp) such that

• the residue field k of K acts on ei,κ via κ;

• M j is spanned over F by the ei,κ for i ≤ d1 + · · ·+ dj ;

• and for each j, s there is a subset Ωj,s ⊂ {1, . . . , n} × HomQp(K,Qp) such

that M j ∩ FilsM is spanned over F by the ei,κ for (i, κ) ∈ Ωj,s.

(Such a basis is easily constructed recursively in j. The case j = 1 is trivial, and it
is straightforward to extend a basis of this kind for M j−1 to one for M j .) We put
Ωs := Ω`,s.

Then we define M to be the free O-module with basis ei,κ for i = 1, . . . , n and

κ ∈ HomQp(K,Qp).
• We let OK act on ei,κ via κ;
• we define Mj to be the O-submodule generated by the ei,κ with i ≤ d1 +
· · ·+ dj ;
• and we define FilsM to be the O-submodule spanned by the ei,κ for (i, κ) ∈

Ωs.

We define Φs : FilsM →M by reverse induction on s. If we have defined Φs+1 we
define Φs as follows:
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• If (i, κ) ∈ Ωs+1 then Φsei,κ = pΦs+1ei,κ.

• If (i, κ) ∈ Ωs − Ωs+1 then Φsei,κ is chosen to be any lift of Φ
s
ei,κ in∑

i′≤d1+···+dj O · ei′,κ◦Frobp , where j is minimal such that i ≤ d1 + · · ·+ dj .

It follows from Nakayama’s lemma that M is an object ofMFhO. When h = p− 1,
suppose that M → M ′ is a nontrivial étale quotient of M . We can without loss
of generality replace M ′ with M ′ ⊗O F; but then the map M → M ′ would factor
through M , contradicting the assumption that M is an object of MFO (and not

just MFp−1O ). It follows that M is also an object of MFO. In the same way we
see that {Mi} is an increasing filtration of subobjects of M in MFO.

It is immediate that M verifies the desired property that Mi⊗O F maps isomor-
phically to M i under the isomorphism M ⊗O F ∼= M .

Set Vi := TK(Mi/Mi−1)⊗OZp. We claim that for this choice of Vi, the conditions
of Definition 2.2.1 are satisfied. Since Fontaine–Laffaille theory is compatible in an
obvious fashion with extension of scalars from E to a finite extension of E, we can
and do suppose that the characters ψi are valued in O×. Then the objects ofMFO
corresponding to the desired lifts V (ψ1, . . . , ψ`) are obtained from M by rescaling
the maps Φs. More precisely, if we let M(ψ1, . . . , ψ`) be defined from M by rescaling
Φsei,κ by ψj(FrobK) for (i, κ) ∈ Ωj,s \ Ωj−1,s, then one can take V (ψ1, . . . , ψ`) =

TK(M(ψ1, . . . , ψ`))⊗OZp. (To establish the second bullet point in Definition 2.2.1,
note from [DFG04, p. 670] that TK is compatible with tensor products, and use (1)
of loc. cit. to compute the Fontaine–Laffaille module corresponding to each ψi.) �

Corollary 2.3.3. Suppose that r admits a (possibly unipotent extended) Fontaine–
Laffaille lift. Then the conclusions of Theorem 2.1.8 and Proposition 2.1.10 hold
for r with respect to any separated, exhaustive increasing filtration {U i} on r.

Corollary 2.3.4. Suppose that r admits a (possibly unipotent extended) Fontaine–
Laffaille lift. Then the conclusion of Corollary 2.1.11 holds for r.

The following result will be used in [GHS15].

Corollary 2.3.5. Suppose that r : GQp → GLn(Fp) admits a (possibly unipotent
extended) Fontaine–Laffaille lift. Suppose also that

r =

χ1 . . . ∗
. . .

...
χn

 .

Suppose that h1 > · · · > hn are integers such that χi|IQp = ωhi . Then r has a
crystalline lift of the form

r =

χ1 . . . ∗
. . .

...
χn

 ,

where χi|IQp = εhi .

Proof. This is immediate from Corollary 2.3.3, taking the Vi to be appropriate
unramified twists of εhi . �
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3. de Rham lifts by global methods

3.1. Potential automorphy and globalisation. In this section, we make use of
(global) potential automorphy techniques to produce potentially crystalline lifts.
Ultimately, these results rely on those of [BLGGT14], but the actual global results
we need are those of [EG14, App. A].

The key idea is as follows: by the methods of [BLGGT14] and [Cal12], we can
often realise r : GK → GLn(Fp) as the restriction to a decomposition group of ρ, the
reduction mod p of the p-adic Galois representation associated to an automorphic
representation on some unitary group. Then the existence of congruences between
automorphic representations of different weights and types produces lifts of r of the
corresponding Hodge and inertial types.

To keep this paper from becoming longer than necessary, and to avoid obscuring
the relatively simple arguments that we need to make, we will not recall the precise
definitions of the spaces of automorphic forms that we work with; the details may
be found in [EG14] (and the papers referenced therein). Suppose from now until
the end of Lemma 3.1.1 that:

• p - 2n, and
• r has a potentially diagonalisable lift of some type (λr, τr).

Then in particular Conjecture A.3 of [EG14] holds for r, so that by [EG14, Cor. A.7],
there is a CM field F with maximal totally real field F+, and an irreducible repre-
sentation ρ : GF+ → Gn(Fp) (where Gn is the algebraic group defined in [CHT08,
§2.1]) which is automorphic in the sense of [EG14, Def. 5.3.1], and which globalises r
in the sense that for each place v | p of F+ we have that v splits in F and that
there is a place ṽ of F lying over v such that Fṽ ∼= K and ρ|GFṽ

∼= r. The above
data will remain fixed throughout this section.

Suppose that for each place v | p of F+ we fix a representation of GLn(OK) on
a finite Zp-module Wv. Via the isomorphisms ιṽ of [EG14, §5.2], we can regard
W := ⊗Zp,v|pWv as a representation of G(OF+,p), where G is a certain unitary

group. Then there is a space of algebraic modular forms S(U,W ), as in [EG14,
§5.2]. (In fact, [EG14] works with coefficients in the ring of integers of some finite
extension of Qp, rather than with Zp-coefficients, but this makes no difference for
the arguments we are making here.)

In particular, for any (λv, τv)v|p a space of automorphic forms Sλ,τ (U,Zp) is
defined in [EG14, §5.2] for certain sufficiently small compact open subgroups U ⊂
G(A∞F+) which are hyperspecial at p, corresponding to taking eachWv to be σ(λv, τv).

Examining the proof of [EG14, Cor. A.7], we see that in fact we have Sλr,τr (U,Zp)m 6=
0, where m is as in [EG14, Def. 5.3.1], and in a mild abuse of notation we write
(λr,v, τr,v) = (λr, τr) for all v | p. (This says that there is an automorphic represen-
tation π of weight λr and type τr, whose associated p-adic Galois representation ρπ
lifts ρ; this representation ρπ is the representation ρ constructed in [EG14, Lem.
A.5].)

Lemma 3.1.1. Keep the notation and assumptions of the preceding discussion.
(1) If for some choice of (λv, τv)v|p we have Sλ,τ (U,Zp)m 6= 0, then for each

v | p, r has a potentially crystalline lift of type (λv, τv).
(2) Sλ,τ (U,Zp)m 6= 0 if and only if there are Serre weights Fv of GLn(k) such

that

• S(U,⊗Fp,v|pFv)m 6= 0, and
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• for all v | p, Fv is a Jordan–Hölder factor of σ(λv, τv).

Proof. (1) is immediate from [EG14, Prop. 5.3.2]. (We remind the reader that
Sλ,τ (U,Zp) is torsion-free.) In the case that τ is trivial, (2) is [BLGG15, Lem.
2.1.6], and the proof goes over unchanged to the general case. �

Theorem 3.1.2. Suppose that p - 2n, and that r has a potentially diagonalisable
lift of some regular weight. Then the following hold.

(1) There exists a finite extension K ′/K (depending only on n and K, and not
on r) such that r has a lift r : GK → GLn(Zp) of Hodge type 0 that becomes
crystalline over K ′.

(2) The representation r has a crystalline lift of some Serre weight.

Proof. We begin with the proof of (2), since the argument is much shorter. Let r
be the given potentially diagonalisable lift, and as above, write (λr, τr) for the type
of r. By Lemma 3.1.1(2), there are Jordan–Hölder factors Fav of σ(λr, τr) (possibly
varying with v) such that S(U,⊗Fp,v|pFav )m 6= 0. Let λv be a lift of av for each

v, and let τv be trivial for each v. Applying Lemma 3.1.1(2) again, we see that
Sλ,1(U,Zp)m 6= 0. By Lemma 3.1.1(1), r has a crystalline lift of Hodge type λv for
each v | p; any such lift will do.

Turn now to (1). As in the previous part we get S(U, V )m 6= 0 for some irre-
ducible representation V = ⊗v|pVv of G(OF+ ⊗ Zp) over Fp. Let T ⊂ B ⊂ GLn
denote the subgroups of diagonal and upper-triangular matrices, as algebraic groups
over Z. Consider Vv as a representation of GLn(OFṽ ) =: Kv via ιṽ. Let Iv ⊂ Kv

denote the preimage of B(kṽ) ⊂ GLn(kṽ). Then we can choose a character χv :

Iv → F×p such that Vv|Iv � χv.

Let q := #k. We claim that for any s ≥ 1 such that qs−1 ≥ n, we can find a

(smooth) lift χv = χ1,v⊗· · ·⊗χn,v : T (OFṽ )→ Z×p of χv|T (OFṽ ) = χ1,v⊗· · ·⊗χn,v
such that the {χi,v}ni=1 are pairwise distinct and χi,v|1+$sṽOFṽ = 1 for all i. Indeed,

recalling that Fṽ ∼= K, write O×Fṽ/(1 + $s
ṽOFṽ ) ∼= k× × H (via the Teichmüller

splitting), where H is abelian of order qs−1. Then each χi,v|k× lifts uniquely to Z×p ,

whereas χi,v|H = 1 and can be lifted arbitrarily to Z×p . Hence it is enough to note

that # Hom(H,Z×p ) = #H = qs−1 ≥ n, and this proves the claim. For the rest of
the proof, we fix such a choice of s and χv.

Now, [Roc98, §3] (applied with a standard Chevalley basis such that Uα,0 = Uα∩
GLn(OFṽ ) for all roots α) provides a pair (Jχv , ρχv ) consisting of a compact open

subgroup Jχv ⊂ Iv that contains T (OFṽ ) and a smooth character ρχv : Jχv → Z×p
such that ρχv |T (OFṽ ) = χv. By construction, ρχv is the restriction of χv to Jχv , so

by Frobenius reciprocity we get a Kv-equivariant map Vv ↪→ IndKvJχv (ρχv ).

In particular, S
(
U,⊗v|p

(
IndKvJχv ρχv

))
m
6= 0. Using Deligne–Serre lifting we get

an automorphic representation π of G(AF+) with associated Galois representation

ρπ lifting ρ|GF : GF → GLn(Fp) such that (i) π∞ ∼= 1 and (ii) HomKv (IndKvJχv ρ
−1
χv , πv) 6=

0 (again via ιṽ) for any v | p. Applying [Roc98, Thm 7.7] (noting there are no re-
strictions on p, cf. [CHT08, Lem. 3.1.6]), we deduce that πv is a subquotient of

Ind
G(Fṽ)
B(Fṽ)

(χ̃−1v ) for some χ̃v : T (Fṽ) → Q×p extending χv. (Note that Jχv = Jχ−1
v

.)
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Since the characters {χi,v}ni=1 are pairwise distinct, the Bernstein–Zelevinsky irre-

ducibility criterion implies that πv ∼= Ind
G(Fṽ)
B(Fṽ)

(χ̃−1v ).

It follows that rec(πv) has N = 0 and on inertia is of the form χ−11,v ⊕ · · · ⊕ χ−1n,v
via the local Artin map, where rec denotes the local Langlands correspondence,
normalised as in [HT01]. Using Lemma 3.1.4 below there exists a finite extension
K ′/K depending only on n and K such that rec(πv)|IK′ is trivial. Applying local-
global compatibility at p to ρπ, we deduce that for any v | p, the representation
ρπ|GFṽ provides a desired lift of ρ|GFṽ

∼= r. �

Remark 3.1.3. The argument in the proof above shows that if χi,v : O×Fv → Q×p are

pairwise distinct smooth characters of O×Fv (or equivalently of IFv ), then IndKvJχv ρχv
is a Kv-type corresponding to ⊕ni=1χi,v under the inertial Langlands correspon-

dence, i.e. [EG14, Conj. 4.1.3] holds with σ(⊕ni=1χi,v)
∼= IndKvJχv ρ

−1
χv .

Lemma 3.1.4. Suppose K/Qp is a finite extension and s ≥ 1. Then there exists a
finite extension L/K such that any smooth character χ : WK → C× that is trivial
on the ramification subgroup GsK satisfies χ|IL = 1.

Proof. By local class field theory there exists a finite extension Ms/K
nr that is

independent of χ such that χ|GMs = 1. (We can take Ms/K abelian such that

Kab/M has Galois group 1 + $s
KOK , with $K a uniformiser of K.) Then we

choose L/K finite such that Ms is contained in L·Knr = Lnr. This implies χ|IL = 1.
In fact, this argument shows that we can take L/K of degree qs−1(q − 1), where
q = #k. �

Our final result may be viewed as a “weak Breuil–Mézard”-type statement.

Theorem 3.1.5. Suppose that p 6= n, that K/Qp is unramified, and that r has a
crystalline lift of weight F for some extended FL weight F . If F is a Jordan–Hölder
factor of σ(λ, τ) for some λ, τ , then r has a potentially crystalline lift of type (λ, τ).

Proof. Choose a ∈ (X
(n)
1 )Hom(k,Fp) such that F ∼= Fa. The conditions that p 6= n

and r has a crystalline lift of weight Fa with a an extended FL weight imply that
p > n; so either p - 2n, as we have assumed throughout this section, or else p = 2
and n = 1.

First suppose that p - 2n. By the main result of [GL14] any crystalline repre-
sentation of extended FL weight is potentially diagonalisable. Let λ′ be the lift
of a (uniquely defined, as K/Qp is unramified). Since aκ,1 − aκ,n ≤ p − (n − 1)

for each κ, Fa = La ⊗Zp Fp (see §1.2.3). By hypothesis, we can apply the con-

structions from the paragraphs preceding Lemma 3.1.1 with λr = λ′ and τr = 1 to
deduce that Sλ′,1(U,Zp)m 6= 0. By Lemma 3.1.1(2), S(U,⊗Fp,v|pFa)m 6= 0. Apply-

ing Lemma 3.1.1(2) with (λv, τv) = (λ, τ) for each v, we see that Sλ,τ (U,Zp)m 6= 0,
and the result follows from Lemma 3.1.1(1).

On the other hand, the case n = 1 is an easy consequence of local class field
theory: σ(τ)∨ is obtained from τ by local class field theory, so that the locally
algebraic characters of K× extending σ(λ, τ) correspond to de Rham characters of
type (λ, τ), while r|IK corresponds to Fa. �
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