Math 470-3, Spring 2010

Graduate Algebra
 Homework 2

In problems 2-5, k denotes an algebraically closed field.

1. Suppose A is noetherian and $I \subset A$ an ideal. Show that $(\sqrt{I})^{n} \subset I$ for some $n \geq 0$. In particular, the nilradical is a nilpotent ideal.
2. Suppose that $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal. Show that $\sqrt{I}=\bigcap_{\mathfrak{m} \max ., \mathfrak{m} \supset I} \mathfrak{m}$. What is $\operatorname{rad} k\left[x_{1}, \ldots, x_{n}\right]$?
In particular, in $k\left[x_{1}, \ldots, x_{n}\right]$ every prime ideal is an intersection of some family of maximal ideals. Show that this doesn't hold for general rings.
3. Suppose that $X \subset k^{n}$ is an arbitrary subset. Show that $V(I(X))=\bar{X}$ (the closure of X in the Zariski topology).
4. Suppose $V \subset k^{n}$ is a variety with ring of regular functions $k[V]=k\left[x_{1}, \ldots, x_{n}\right] / I(V)$. Let $P \in V$ be a point and let $\mathfrak{m} \subset k[V]$ be the corresponding maximal ideal. The aim of this problem is to show that the localisation $k[V]_{\mathfrak{m}}$ can be interpreted as the ring of germs of regular functions at the point P.
Recall that V carries the Zariski topology (induced from the one on k^{n}). Define the ring of regular functions on an open subset $U \subset V$ as follows: $\mathcal{O}_{V}(U)$ consists of all functions $f: U \rightarrow k$ such that for each $x \in U$ there is an open neighbourhood $x \in U^{\prime} \subset U$ and functions $p, q \in k[V]$ with q not having any zero on U^{\prime} such that $f=p / q$ on U^{\prime}.
The ring of germs of regular functions at P is $\mathcal{O}_{V, P}$. Its elements are pairs (U, f) consisting of an open subset $P \in U \subset V$ and $f \in \mathcal{O}_{V}(U)$, modulo the equivalence relation that $(U, f) \sim\left(U^{\prime}, f^{\prime}\right)$ whenever there is a an open neighbourhood $P \in U^{\prime \prime} \subset U \cap U^{\prime}$ such that $f=f^{\prime}$ on $U^{\prime \prime}$. (It's easy to check that this is a k-algebra.)
You may assume that V is irreducible. This isn't necessary, but makes the argument a little easier.
(a) Show that there is a well-defined k-algebra homomorphism $\mathcal{O}_{V}(U) \rightarrow$ $k[V]_{\mathfrak{m}}$ whenever $P \in U$. (This is a bit subtle, do this very carefully!)
(b) Find a k-algebra homomorphism $\mathcal{O}_{V, P} \rightarrow k[V]_{\mathfrak{m}}$. (This should now be straightforward.)
(c) Show that the map in (b) is an isomorphism.
5. (a) Suppose that $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is non-zero. Determine the irreducible components of $V((f))$.
(b) Find the irreducible components of the variety $V=V\left(\left(x^{2}-y z, x-\right.\right.$ $x z)) \subset k^{3}$.
6. Compute the normalisation of the integral domain $k[x, y] /\left(y^{2}-x^{2}(x+1)\right)$. Here k is any field.
7. Atiyah-Macdonald: §6: 3, 4
8. Atiyah-Macdonald: §8: 3
9. Atiyah-Macdonald: §5: 1, 10(i)
10. Atiyah-Macdonald: §1: 21, 22
11. Atiyah-Macdonald: $\S 3: 21$. As a corollary deduce that if $A \rightarrow B$ is finite then the map on Specs has finite fibres. (Hint: where did we see rings with only finitely many prime ideals before?)

Other exercises that are useful (but not required):

- Can you do \#4 without assuming that V is irreducible?
- In $\# 4$ show that $\mathcal{O}_{V}(D(f))$ is naturally isomorphic to the localisation $k[V]_{f}$, for any $f \in k[V]$.

