MAT 347
 Orbits and Stabilizers, Cyclic groups
 September 24, 2019

Orbits and Stabilizers

Definitions. Let G be a group acting on a set A.

- Given $a \in A$, we define the stabilizer of a as the set

$$
\operatorname{Stab}(a):=\{g \in G \mid g \cdot a=a\} \subseteq G .
$$

- Given $a \in A$ we define the orbit of a as the set

$$
G a:=\{g \cdot a \mid g \in G\} \subseteq A .
$$

1. Verify that $\operatorname{Stab}(a)$ is a subgroup of G.
2. Say we want to count how many different necklaces we can build with 6 stones each, if we have stones of two different colours. Define a diagram to be any way of colouring each of the six vertices of a hexagon with black or white. Notice that $|A|=64$. Show that D_{12} acts on A, and that the number of orbits of this action equals the number of different necklaces.
Note: This shows that the problem of counting the number of orbits of an action is an interesting problem in combinatorics.
3. Regarding the previous question, consider the following diagrams:

For each one of them, compute the size of its orbit and the size of its stabilizer. Make a conjecture or a formula that relates these two numbers for an arbitrary element in an arbitrary action. Then prove it.
4. If a group G acts on a set A and $G a, G b$ are any two orbits, what can we say about how $G a$ and $G b$ relate to each other? (For example, what happens if the two orbits have any element in common?)

Cyclic groups

Definition: A group is cyclic if it has a generating set with a single element. In other words, a group G is cyclic if there exists $a \in G$ such that

$$
G:=\left\{a^{n} \mid n \in \mathbb{Z}\right\}
$$

When this happens, we write $G=\langle a\rangle$.
5. If G is a cyclic group generated by a, what is the relation between $|G|$ and $|a|$? Remember that $|G|$ is the order of G, namely its cardinality. On the other hand, $|a|$ is the order of the element a, which has a different definition.
6. True of False? A group G is cyclic if and only if it contains an element whose order equals $|G|$.
7. Prove that two cyclic groups are isomorphic if and only if they have the same order.

Because of Problem 7, given any positive integer n, we define C_{n} to be the cyclic group of order n. We normally use a multiplicative notation for it. A presentation of C_{n} would be

$$
C_{n}:=\left\langle a \mid a^{n}=1\right\rangle
$$

Notice that $C_{n} \cong \mathbb{Z} / n \mathbb{Z}$ (we still use additive notation for the latter!).
On the other hand, we normally think of $(\mathbb{Z},+)$ as the cyclic group of infinite order, with additive notation.
8. Let G be a cyclic group generated by a. What are all the generators of G ? (Here I am asking, which other elements of G generate G ?) How many of them are there? You may want to think of the finite and infinite cases separately. If you do not know how to start, consider the specific cases C_{6} and C_{12} first.

