MAT 347
 Irreducibility criteria
 January 23, 2019

Let R be a UFD and let F be its field of fractions. Let $f(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0} \in R[X]$.

The main result

- If $f(X) \in R[X]$ is primitive, then $f(X)$ is irreducible in $R[X] \Longleftrightarrow f(X)$ irreducible in $F[X]$.

About roots

- $f(X)$ has a degree 1 factor in $F[X]$ iff it has a root in F.
- Assume $\operatorname{deg} f(X)=2$ or 3 . If f has no roots in F, then it is irreducible in $F[X]$.
- Assume that $\frac{r}{s}$ is a root of $f(X)$ written as a fraction in R in lowest terms.

Then $r \mid a_{0}$ and $s \mid a_{n}$.

Reduction

- Let $P \unlhd R$ be a prime ideal. Assume $f(X)$ is monic. Let $\overline{f(X)} \in(R / P)[X]$ be the reduction of $f(X)$. If $\overline{f(X)}$ is irreducible in $(R / P)[X]$, then $f(X)$ is irreducible in $R[X]$.

Eisenstein criterion

- Let $P \unlhd R$ be a prime ideal. Assume $f(X)$ is monic; $a_{n-1}, \ldots, a_{0} \in P$; and $a_{0} \notin P^{2}$. Then $f(X)$ is irreducible in $R[X]$.

Translation

- Let $a \in R$. The map $T_{a}: f(X) \in R[X] \rightarrow f(X+a) \in R[X]$ is a ring isomorphism.

Exercises

Determine with proof whether each of the following polynomials is irreducible in the given polynomial ring. If they are not, factor them into irreducibles.

1. $f(X)=X^{3}+4 X^{2}+X-6$ in $\mathbb{Q}[X]$.
2. $f(X)=X^{4}+X^{2}+1$ in $(\mathbb{Z} / 2 \mathbb{Z})[X]$.
3. $f(X)=X^{4}+1$ in $\mathbb{Z}[X]$.
4. $f(X)=X^{5}+3 X^{4}+30 X^{2}-9 X+12$ in $\mathbb{Q}[X]$.
5. $f(X)=X^{5}+4 X^{3}-X+i X+3+3 i$ in $\mathbb{Z}[i][X]$.
6. $f(X)=X^{3}+6$ in $(\mathbb{Z} / 7 \mathbb{Z})[X]$.
7. $f(X, Y)=X^{3}+X^{2} Y+3 X Y^{2}+5 X Y+2 Y$ in $\mathbb{Z}[X, Y]$.
8. $f(X)=X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1$ in $\mathbb{Z}[X]$.

Hints

3. Apply Eisenstein to $f(X+1)$.
4. Eisenstein.
5. Apply Eisenstein to $f(X+1)$.
