MAT 347
 Factorization, GCDs, and ideals
 January 8, 2019

Throughout this worksheet, R is always an integral domain; any unintroduced letter represents an element of R.

1 Primes and irreducibles

Definitions:

- Assume p is not a unit and not zero. p is called irreducible if whenever $p=a b$, either a is a unit or b is a unit.
- Assume p is not a unit and not zero. p is called prime if whenever $p \mid a b$, either $p \mid a$ or $p \mid b$.

1. Prove that every prime element is irreducible.

2 Factorization in terms of GCDs

Definitions:

- d is a $G C D$ of a and b if it is a divisor of both a and b and, in addition, every other divisor of a and b divides d.
- Assume d is a GCD of a and b. We say that d satisfies the Bézout identity if there exist $x, y \in R$ such that $d=x a+y b$.
- R is a $G C D$ domain if every pair of non-zero elements have a GCD.
- R is a Bézout domain if every pair of non-zero elements have a GCD which satisfies the Bézout identity.

2. Let S be the ring of polynomials with coefficients in \mathbb{Q} which have no degree-one term, i.e. $S=\left\{a_{0}+a_{2} X^{2}+a_{3} X^{3}+\cdots+a_{n} X^{n}: a_{i} \in \mathbb{Q}\right\}$. Note that this is a subring of $\mathbb{Q}[X]$.
(a) Do the elements X^{2} and X^{3} have a GCD in S ? If so, does it satisfy the Bézout identity?
(b) Do the elements X^{5} and X^{6} have a GCD in S ? If so, does it satisfy the Bézout identity?
(Hint: consider degrees...)
3. Prove that every UFD is a GCD domain.
4. Prove that in a Bézout domain every irreducible element is a prime.

Hint: Let p be irreducible. Assume $p \mid a b$. Let d be a GCD of p and a. Then...

3 Factorization in terms of ideals

5. For each of the following statement, write an equivalent statement in terms of ideals:
(a) a is a unit.
(b) a divides b.
(c) a and b are associates.
(d) p is irreducible.
(e) p is prime.
(f) c is a common divisor of a and b.
(g) d is a GCD of a and b.
(h) d is a GCD of a and b and there exist $x, y \in R$ such that $d=a x+b y$.
(i) R is a Bézout domain.
(j) There exists a non-zero non-unit in R which cannot be written as a product of irreducible elements. (Update: show that this condition implies the existence of an infinite, strictly increasing chain of principal ideals. The converse is unfortunately not true...)

4 PIDs

Definition: A principal ideal domain (abbreviated PID) is an integral domain in which every ideal is principal.
6. Prove that every PID is a Bézout domain.
7. Prove that every PID is a UFD. (Hint: use your answers to questions 5 i and 5 j .)

