MAT 1200/415, Algebraic Number Theory, Fall 2018 Homework 1, due on Friday September 28 Florian Herzig

1. Marcus, Number fields, Chapter 2, Problems 11, 14, 30, 42(ab).
2. Suppose that $A \subset B$ are domains with B integral over A, and that \mathfrak{q} is a prime ideal of B.
(a) Show that A is a field iff B is a field.
(b) Deduce that \mathfrak{q} is maximal in B iff $\mathfrak{q} \cap A$ is maximal in A.
3. Let $K=\mathbb{Q}(\sqrt{-14})$. Let $I=(3, \sqrt{-14}-1)$ be an ideal in \mathcal{O}_{K}. Prove that I, I^{2}, I^{3} aren't principal, while I^{4} is.
4. Let I be the ideal $(2,1+\sqrt{-3})$ in $\mathbb{Z}[\sqrt{-3}]$. Prove that $I^{2}=2 I$ but $I \neq(2)$. Conclude that ideals in $\mathbb{Z}[\sqrt{-3}]$ do not factor uniquely into prime ideals. (We'll soon see that in rings of integers of number fields we do have unique factorisation into prime ideals. Why isn't this a contradiction?)
