MAT 1100, Algebra I, Fall 2016
 Homework 4, due on Tuesday November 22
 Florian Herzig

All rings in problems 2-6 are commutative.

1. (a) Show that the map $\mathbb{C} \rightarrow M_{2}(\mathbb{R})$ sending $a+b i$ to $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ is a ring homomorphism.
(b) Suppose that S is a ring, $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right): a, b, d \in S\right\}$ (a subring of $\left.M_{2}(S)\right)$, and that $I=\left\{\left(\begin{array}{cc}a & b \\ 0 & 0\end{array}\right): a, b \in S\right\}$. Show that I is an ideal of R by finding a ring homomorphism from R to some other ring that has kernel I.
(c) Show that $x^{2}+1$ is irreducible in $\mathbb{F}_{3}[x]$. Deduce that $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is a field. Find its order $N=\left|\mathbb{F}_{3}[x] /\left(x^{2}+1\right)\right|$.
(d) Using the notation of (iii), show that $\mathbb{F}_{3}[x] /\left(x^{2}+1\right) \nsubseteq \mathbb{Z} / N \mathbb{Z}$ as rings.
2. (a) Suppose $I \triangleleft R$ is an ideal. Suppose that $\bar{J} \triangleleft R / I$ corresponds to $J \triangleleft R$ in the correspondence theorem. Show that \bar{J} is a prime (resp. maximal) ideal in R / I iff J is a prime (resp. maximal) ideal in R.
(b) Determine all prime ideals in $\mathbb{R}[x] /\left(x^{3}-3 x-2\right)$. Which of them are maximal?
3. The ring $R=\mathbb{Z}[\sqrt{-2}]$ is a UFD (you can assume this as a fact). Consider the norm function $N: R \rightarrow \mathbb{Z}_{\geq 0}, z \mapsto|z|^{2}$ as in class.
(a) Determine the units R^{\times}.
(b) Factor the following elements into primes in the ring $R: 2,5,19$.
(c) Show that a prime number p is prime in R iff $x^{2}+2 y^{2}=p$ has no solutions with $x, y \in \mathbb{Z}$.
(d) Find the gcd of $-2+\sqrt{-2}$ and 3 in R.
4. Suppose that $\left\{P_{i}: i \in I\right\}$ is a chain of prime ideals of a ring R (for some set I). Prove that $\bigcap_{i \in I} P_{i}$ is a prime ideal. Deduce that any prime ideal of R contains a minimal prime ideal. (As usual, a minimal prime
ideal is one that does not contain any strictly smaller prime ideal. For example, in any domain, the ideal (0) is a minimal prime ideal, in fact it is the unique one.)
5. (a) If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ with $a_{n} a_{0} \neq 0$ has a root $\alpha \in \mathbb{Q}$, show that $\alpha=\frac{r}{s}$ with integers r, s such that $r \mid a_{0}$ and $s \mid a_{n}$. (Hint: use a version of Gauss' lemma to deduce that f has a linear factor in $\mathbb{Z}[x]$.)
(b) Show that $x^{4}+5 x^{3}+3 x^{2}-x-1$ is irreducible in $\mathbb{Q}[x]$. (Hint: use Gauss' lemma. To rule out quadratic factors, write it as a product of unknown quadratic polynomials in $\mathbb{Z}[x] \ldots$)
(c) Is $x^{4}+4 x^{2}-x+6$ irreducible in $\mathbb{Q}[x]$?
6. Suppose R is a UFD. Define the content $c(f)$ for $f=a_{n} x_{n}+\cdots+a_{1} x+$ $a_{0} \in R[x], f \neq 0$ to be $c(f)=\operatorname{gcd}\left(a_{n}, \ldots, a_{0}\right)$.
(a) Show that for f as above we can write $f=b f_{0}$, where $b \in R$ and $f_{0} \in R[x]$ is primitive. Show that in this decomposition, b and f_{0} are unique up to associates.
(b) Show that the product of two primitive polynomials is primitive. (Hint: a result from class about prime elements is useful.)
(c) Deduce that $c(f g)=c(f) c(g)$ for $f, g \in R[x]-\{0\}$.
