MAT 1100, Algebra I, Fall 2015
 Homework 4, due on Friday November 20

 Florian Herzig

 Florian Herzig}

All rings in these problems are commutative.

1. (a) Suppose that $p=0$ in the ring R, where p is a prime number. Show that $\varphi: R \rightarrow R, x \mapsto x^{p}$ is a ring homomorphism.
(b) Suppose R is any ring. Show that if $x \in R$ is nilpotent (i.e., $x^{n}=0$ for some $n>0$), then $1+x \in R^{\times}$.
(c) Suppose that R is as in part (a). Show that if x is nilpotent, then $1+x$ is unipotent (i.e., $(1+x)^{n}=1$ for some $\left.n>0\right)$.
2. (a) Suppose $I \triangleleft R$ is an ideal. Suppose that $\bar{J} \triangleleft R / I$ corresponds to $J \triangleleft R$ in the correspondence theorem. Show that \bar{J} is a prime ideal in R / I iff J is a prime ideal in R. Same for maximal ideals.
(b) Determine all prime ideals in $\mathbb{R}[x] /\left(x^{3}-3 x-2\right)$. Which of them are maximal?
3. The ring $R=\mathbb{Z}[\sqrt{-2}]$ is a UFD (you can assume this as a fact). Consider the norm function $N: R \rightarrow \mathbb{Z}_{\geq 0}, z \mapsto|z|^{2}$ as in class.
(a) Determine the units R^{\times}.
(b) Factor the following elements into primes in the ring $R: 2,5,19$.
(c) Show that a prime number p is prime in R iff $x^{2}+2 y^{2}=p$ has no solutions with $x, y \in \mathbb{Z}$.
(d) Find the gcd of $-2+\sqrt{-2}$ and 3 in R.
4. Consider the ring $R=K\left[x^{2}, x^{3}\right]$, where K is any field. (This is the smallest subring of $K[x]$ containing x^{2}, x^{3}. Concretely it's given by all polynomials $\sum a_{i} x^{i}$ with $a_{1}=0$.)
(a) Show that x^{2}, x^{3} are both irreducible in R.
(b) Find two different factorisations of x^{6} into irreducibles, and deduce that neither of x^{2}, x^{3} are prime in R.
(c) Is R a UFD?
(d) Show that the ideal $\left(x^{2}, x^{3}\right)$ is not principal.
5. (a) If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ with $a_{n} a_{0} \neq 0$ has a root $\alpha \in \mathbb{Q}$, show that $\alpha=\frac{r}{s}$ with integers r, s such that $r \mid a_{0}$ and $s \mid a_{n}$. (Hint: use a version of Gauss' lemma to deduce that f has a linear factor in $\mathbb{Z}[x]$.)
(b) Show that $x^{4}+5 x^{3}+3 x^{2}-x-1$ is irreducible in $\mathbb{Q}[x]$. (Hint: use Gauss' lemma. To rule out quadratic factors, write it as a product of unknown quadratic polynomials in $\mathbb{Z}[x] \ldots$)
(c) Is $x^{4}+4 x^{2}-x+6$ is irreducible in $\mathbb{Q}[x]$?
