## MAT 1100, Algebra I, Fall 2016 <br> Homework 3, due on Thursday, November 3 <br> Florian Herzig

1. Show the following are equivalent:
(a) Every finite group of odd order is solvable.
(b) Every non-abelian finite simple group is of even order.

Remark: a famous theorem of Feit and Thompson (1963) shows that (a) is true.
2. (a) If $|G|=p q$ with $p<q$ both prime, show that $G$ is solvable.
(b) If $|G|=p q r$ with $p<q<r$ all prime, show that $G$ is solvable. (Hint: if $G$ is simple, give a lower bound for $n_{p}, n_{q}, n_{r}$ and hence for the number of elements of order $p, q, r$. Show that their sum is greater than $|G|$.)
3. Suppose that $G$ is a finite solvable group. Let $M \triangleleft G$ be a minimal normal subgroup (i.e. $M \neq 1$, and if $N \triangleleft G, N \leq M$, then $N=1$ or $N=M$ ). Show that $M$ is abelian and that there exists a prime number $p$ such that every non-identity element of $M$ has order $p$. (In fact, we will see later that this implies $M \cong(\mathbb{Z} / p)^{r}$ for some $r$.)
(Hint: use characteristic subgroups of $M$ to deduce first that $M$ is abelian, then that $M$ is a $p$-group, finally the claim.)
4. Identify the following (familiar) group: $\langle x, y| y x y^{-1}=x^{-1}, x y x^{-1}=$ $\left.y^{-1}\right\rangle$. (Hint: first try to establish more relations, e.g. $x^{4}=1$.)
5. (a) Consider the group $G=\left\langle x, y \mid x^{2}=y^{2}=1\right\rangle$. Show that $G$ is isomorphic to a subgroup $H$ of $S_{\mathbb{Z}}$, the group of permutations of the set $\mathbb{Z}$. (Hint: send $x$ to $a \mapsto-a$ and $y$ to $a \mapsto 1-a$.) Show that $H=\mathbb{Z} \rtimes \operatorname{Aut}(\mathbb{Z})$, an internal semidirect product, where $\mathbb{Z}$ is the subgroup of translations and $\operatorname{Aut}(\mathbb{Z})$ the automorphism group of $\mathbb{Z}$ (of order 2).
(b) Let $G$ be a group and $N$ a normal subgroup of $G$ such that $G / N \cong$ $F(S)$ for some set $S$. Prove that $G \cong N \rtimes_{\theta} F(S)$ for some group homomorphism $\theta: F(S) \rightarrow$ Aut $N$.
6. Suppose that $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ with $m<n$. The purpose of this exercise is to show that $G$ is infinite. (Note that this can fail if $m=n$.)
(a) Show that it suffices to prove the existence of a non-zero homomorphism $G \rightarrow \mathbb{Z}$.
(b) As a warmup, use the universal property of $\langle S \mid R\rangle$ to construct a non-zero homomorphism $\left\langle x, y \mid x y^{3} x^{4} y^{-1}\right\rangle \rightarrow \mathbb{Z}$. In fact, find all possible such homomorphisms.
(c) Now show that in general there is a non-zero homomorphism $G \rightarrow$ $\mathbb{Z}$. It may help to use facts from linear algebra...

