MAT 1100, Algebra I, Fall 2016 Homework 3, due on Thursday, November 3 Florian Herzig

- 1. Show the following are equivalent:
 - (a) Every finite group of odd order is solvable.
 - (b) Every non-abelian finite simple group is of even order.

Remark: a famous theorem of Feit and Thompson (1963) shows that (a) is true.

- 2. (a) If |G| = pq with p < q both prime, show that G is solvable.
 - (b) If |G| = pqr with p < q < r all prime, show that G is solvable. (Hint: if G is simple, give a lower bound for n_p , n_q , n_r and hence for the number of elements of order p, q, r. Show that their sum is greater than |G|.)
- 3. Suppose that G is a finite solvable group. Let $M \triangleleft G$ be a minimal normal subgroup (i.e. $M \neq 1$, and if $N \triangleleft G$, $N \leq M$, then N = 1 or N = M). Show that M is abelian and that there exists a prime number p such that every non-identity element of M has order p. (In fact, we will see later that this implies $M \cong (\mathbb{Z}/p)^r$ for some r.)

(Hint: use characteristic subgroups of M to deduce first that M is abelian, then that M is a p-group, finally the claim.)

- 4. Identify the following (familiar) group: $\langle x, y \mid yxy^{-1} = x^{-1}, xyx^{-1} = y^{-1} \rangle$. (Hint: first try to establish more relations, e.g. $x^4 = 1$.)
- 5. (a) Consider the group $G = \langle x, y \mid x^2 = y^2 = 1 \rangle$. Show that G is isomorphic to a subgroup H of $S_{\mathbb{Z}}$, the group of permutations of the set Z. (Hint: send x to $a \mapsto -a$ and y to $a \mapsto 1 - a$.) Show that $H = \mathbb{Z} \rtimes \operatorname{Aut}(\mathbb{Z})$, an internal semidirect product, where Z is the subgroup of translations and $\operatorname{Aut}(\mathbb{Z})$ the automorphism group of Z (of order 2).
 - (b) Let G be a group and N a normal subgroup of G such that $G/N \cong F(S)$ for some set S. Prove that $G \cong N \rtimes_{\theta} F(S)$ for some group homomorphism $\theta : F(S) \to \operatorname{Aut} N$.

- 6. Suppose that $G = \langle x_1, \ldots, x_n | r_1, \ldots, r_m \rangle$ with m < n. The purpose of this exercise is to show that G is infinite. (Note that this can fail if m = n.)
 - (a) Show that it suffices to prove the existence of a *non-zero* homomorphism $G \to \mathbb{Z}$.
 - (b) As a warmup, use the universal property of $\langle S | R \rangle$ to construct a non-zero homomorphism $\langle x, y | xy^3x^4y^{-1} \rangle \to \mathbb{Z}$. In fact, find all possible such homomorphisms.
 - (c) Now show that in general there is a non-zero homomorphism $G \to \mathbb{Z}$. It may help to use facts from linear algebra...