MAT 1100, Algebra I, Fall 2015
 Homework 3, due on Friday November 6 Florian Herzig

1. (a) If $|G|=p q$ with $p<q$ both prime, show that G is solvable.
(b) If $|G|=p q r$ with $p<q<r$ all prime, show that G is solvable. (Hint: if G is simple, give a lower bound for n_{p}, n_{q}, n_{r} and hence for the number of elements of order p, q, r. Show that their sum is greater than $|G|$.)
2. Show that the subgroup $B \leq \mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ consisting of all upper-triangular matrices is solvable. (Hint: it may be useful to consider a normal p subgroup.)
3. (a) Show that any group G is a quotient group of some free group.
(b) Show that any group G admits a presentation, i.e. $G \cong\langle S \mid R\rangle$ for some set S and some set of words R (in S).
4. Identify the following (familiar) group: $\langle x, y| y x y^{-1}=x^{-1}, x y x^{-1}=$ $\left.y^{-1}\right\rangle$. (Hint: first try to establish more relations, e.g. $x^{4}=1$.)
5. Consider the group $G=\left\langle s, t \mid s^{2}=t^{3}=(s t)^{3}=1\right\rangle$.
(a) Show that G has at most 12 elements. (Hint: show that each element is represented by a word of length at most 3.)
(b) Using (a), conclude that $G \cong A_{4}$.
6. Recall that a free group $F(S)$ on a set S comes equipped with a function $\alpha_{S}: S \rightarrow F(S)$. Also recall that for any function $\beta: S \rightarrow G$, for some $\underset{\widetilde{\beta}}{\operatorname{group}} G$, there exists a unique homomorphism $\widetilde{\beta}: F(S) \rightarrow G$ such that $\widetilde{\beta} \circ \alpha_{S}=\beta$.
(a) Suppose that $f: S \rightarrow T$ is a function between sets S, T. Show that there exists a unique homomorphism between free groups $F(f): F(S) \rightarrow F(T)$ such that $F(f) \circ \alpha_{S}=\alpha_{T} \circ f$.
(b) Show that we have $F(f \circ g)=F(f) \circ F(g)$ (whenever f, g are functions such that the target of g is the domain of f) and $F\left(1_{S}\right)=$ $1_{F(S)}$.
(c) Show that for any functions $\beta: S \rightarrow G, f: T \rightarrow S$ and homomor$\operatorname{phism} \phi: G \rightarrow H$ we have:

$$
\widetilde{\beta \circ f}=\widetilde{\beta} \circ F(f) ; \quad \widetilde{\phi \circ \beta}=\phi \circ \widetilde{\beta} .
$$

