MAT 1100, Algebra I, Fall 2015 Homework 2, due on Friday, October 16¹ Florian Herzig

- 1. (a) Suppose that $H \leq G$. Show that $N := \bigcap_{g \in G} gHg^{-1}$ is the largest normal subgroup of G that is contained in H. (In other words, $N \triangleleft G, N \leq H$, and if M is a subgroup of G with $M \triangleleft G, M \leq H$, then $M \leq N$.)
 - (b) Suppose that (G : H) is finite. Show that there exists a normal subgroup $N \lhd G$ with $N \le H$ such that (G : N) is finite. (Hint: consider a suitable G-action $G \to S_X$.) Conclude that for any $g \in G$ there exists $n \ge 1$ such that $g^n \in H$.
 - (c) Suppose that G is finite. Show that the intersection of all Sylow p-subgroups of G is the largest normal p-subgroup of G.
- 2. Suppose that $G \neq 1$ is finite and that $H \leq G$ such that (G : H) = p is the *smallest* prime number dividing |G|.
 - (a) Let $X := \{gHg^{-1} : g \in G\}$. Show that $|X| \in \{1, p\}$.
 - (b) Show that $H \triangleleft G$. (Hint: if |X| = p consider the kernel of a suitable action $G \rightarrow S_X$.)
- 3. Prove Proposition 30 from class: suppose that $N \triangleleft G$, so we say that $1 \rightarrow N \xrightarrow{i} G \xrightarrow{\pi} G/N \rightarrow 1$ is a short exact sequence.
 - (a) If we have a splitting (or section) $s : G/N \to G$, i.e. a homomorphism s such that $\pi \circ s = \mathrm{id}_{G/N}$, then $G = N \rtimes \mathrm{im}(s)$, an internal semidirect product, and $\mathrm{im}(s) \cong G/N$.
 - (b) If we have a *splitting* (or *retraction*) $r: G \to N$, i.e. a homomorphism r such that $r \circ i = id_N$, then $G = N \times ker(r)$, an internal direct product, and $ker(r) \cong G/N$.
- 4. (a) Show that Q_8 isn't an internal semidirect product of two nontrivial subgroups. (Hint: show that Q_8 contains a nontrivial element that is contained in every nontrivial subgroup.)

¹You can also hand it in on Monday, October 19, but in that case I cannot guarantee that it will be graded before the term test.

- (b) Show that Aut(Z/5) is cyclic of order 4, and use this to construct a nonabelian group of order 20.
- 5. Suppose $N \triangleleft G$. In the context of the correspondence theorem (as stated in Theorem 9 in class) show that if subgroups $\overline{H}_1 \leq \overline{H}_2 \leq G/N$ correspond to subgroups $H_1 \leq H_2 \leq G$ containing N, then $H_1 \triangleleft H_2$ iff $\overline{H}_1 \triangleleft \overline{H}_2$, and if this holds, then $H_2/H_1 \cong \overline{H}_2/\overline{H}_1$.
- 6. Suppose that X_1 , X_2 are two *G*-sets (with *G*-actions denoted by \cdot_1 and \cdot_2 , respectively). We say that a morphism of *G*-sets is a function $f: X_1 \to X_2$ such that $f(g \cdot_1 x) = g \cdot_2 f(x)$ for all $g \in G$, $x \in X_1$. We say that *f* is an *isomorphism of G*-sets if *f* is moreover a bijection.
 - (a) Show that any transitive G-set is isomorphic to G/H (with G acting by left multiplication) for some subgroup $H \leq G$.
 - (b) Given $H_1, H_2 \leq G$ show that there exists a morphism of G-sets $f: G/H_1 \to G/H_2$ if and only if H_1 is contained in some conjugate of H_2 .
 - (c) Show that $G/H_1 \cong G/H_2$ as G-sets if and only if H_1 and H_2 are conjugate subgroups.