MAT 1100, Algebra I, Fall 2016 Homework 1, due on Tuesday October 4 Florian Herzig

- 1. (a) Let G be a group in which $g^2 = 1$ for every $g \in G$. Show that G is abelian.
 - (b) Let G be a finite group whose only subgroups are $\{1\}$ and G. Prove that either $G = \{1\}$ or that G is cyclic of prime order.
- 2. Suppose that G is a group.
 - (a) Recall that an inner automorphism of G is an automorphism that is induced by conjugation by some $x \in G$. Show that the inner automorphisms Inn(G) form a subgroup of the automorphism group Aut(G) of G.
 - (b) Let $Z(G) := \{g \in G : gh = hg \ \forall h \in G\}$ (the centre of G). Show that any subgroup of Z(G) is normal in G.
 - (c) Show that $Inn(G) \cong G/Z(G)$ and that $Inn(G) \triangleleft Aut(G)$.
 - (d) Give an example, with proof, of an outer automorphism of a finite group. (An outer automorphism is one that is not inner.)
- 3. Suppose that G is a finite group and N a normal subgroup such that |N|, |G/N| are relatively prime. Show that N is the *only* subgroup of G of order |N|. (Hint: suppose that H is another subgroup of that order and consider HN...)
- 4. (a) Let G, H be finite groups and $\phi : G \to H$ homomorphisms. Show that the order of the image, $|\operatorname{im}(\phi)|$, divides $\gcd(|G|, |H|)$.
 - (b) Suppose that (G, +) is an abelian group and $n \ge 1$. Let $G[n] := \{x \in G : nx = 0\}$. (Here we think of G with additive notation, so 0 is the identity and $nx = x + \cdots + x$, n times.) Show that G/G[n] is isomorphic to a subgroup of G. Identify this subgroup.
- 5. Let G be a group, $N \triangleleft G$ a normal subgroup, and X a G-set.
 - (a) Prove that there are unique actions of G on X^N and on $N\backslash X$ for which the inclusion map $X^N\hookrightarrow X$ and the natural map $X\to X$

- $N \setminus X$ are G-maps. Show also that these actions are induced by actions of G/N on X^N and on $N \setminus X$, via the canonical map $G \to G/N$. (Here, $X^N := \{x \in X : nx = x \ \forall n \in N\}$ and $N \setminus X$ denotes the set of orbits of N on X.)
- (b) Suppose that $H \leq G$ is a subgroup, and let X be the G-set G/H. Suppose that there is a G-action on X^H for which the inclusion $X^H \hookrightarrow X$ is a G-map, or that there is a G-action on $H \setminus X$ for which the natural map $X \to H \setminus X$ is a G-map. Prove that H is normal in G.
- 6. (a) Show that there is no simple group of order pq, where p, q are distinct primes.
 - (b) Show that there is no simple group of order p^2q , where p, q are distinct primes. (Hint: use Sylow to show that $n_p = q$, $n_q = p^2$, ... Rule out (p,q) = (2,3) e.g. by counting elements of order 3.)