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Chapter 1The basi idea
1.1 The Chern-Simons path integralThe aim of this thesis is to explain some tehniques originally developed by physiistsstudying quantum �eld theory, and to show how they an be used to derive threemanifold and knot invariants. The basi idea is simple and to make it even simplerwe will ignore knots for a moment and explain it �rst for the ase of a bare threemanifold. Our invariants will be omplex numbers. To get a omplex number out ofa bare three manifold, that has no additional struture on it, is hard. It is a lot easierto get numerial quantities when there is more struture to play with. So we look ata three manifold with an additional piee of struture, generate a omplex numberusing this additional struture, and then try to integrate our omplex number over allpossible hoies of suh an additional struture. The additional struture that we willpik will be a onnetion on some pre-piked bundle1 on an oriented three manifoldM3, and the omplex number that we will generate, the integrand in our program,will essentially be the exponential of the `Lagrangian' | the Chern-Simons number[17℄ assoiated with the onnetion A:s(A) = 14� ZM3 tr(A ^ dA+ 23A ^ A ^ A);and so our invariant will be2:W(M3; k) = ZADA e ik4� RM3 tr(A^dA+ 23A^A^A):: (1.1)(k is an integer parameter whose importane for our purposes will be made learshortly).1Namely, a prinipal G-bundle for some Lie group G. We also assume that G omes equippedwith a bilinear non-degenerate invariant form tr on its Lie algebra G.2For historial reasons, suh integrals over in�nite dimensional spaes are alled path integrals.For the origin of the name, hek [22℄. 5



To inorporate a link X = fXg�=1 into the above piture, we have to pik a listfRg�=1 of �nite dimensional representations of G, and supplement the integrand:W(M3;X ; k) def= * �Y=1OX ;R+ = ZADA �Y=1OX ;R (A)eik s(A) (1.2)Where3OX;R(A) = trR Pexp�Z ds _X i(s)Ai(X(s))� = dimR � Z ds _X i(s)Aai (X(s))R�a�+ Zs1<s2ds1;2 _X i1(s1) _X i2(s2)Aa1i1 (X(s1))Aa2i2 (X(s2))R�1a1�2R�2a2�1 � � � � : (1.3)(1.3) is, of ourse, just the trae of the holonomy of the onnetion A along X in therepresentation R, expanded in powers of the onnetion A.1.2 Perturbation theory and Feynman diagrams1.2.1 IntrodutionLukily, the spae of all onnetions A is an aÆne spae and so there should be aanonial hoie for a measure on it | the Lesbegue measure. Unlukily, A is anin�nite dimensional spae and so that measure doesn't really exist. To go aroundthis we will use perturbation theory tehniques that were originally developed byphysiists to be used in quantum �eld theory. Instead of attempting to alulate theintegral (1.1) as it is, we will try to investigate its asymptoti behavior as k=2�i!1.It will turn out that (assuming that in�nite dimensional Lesbegue measures do exist)to determine this asymptoti behavior requires only evaluating �nite dimensionalintegrals represented by so-alled \Feynman diagrams", and therefore it is possibleto de�ne the asymptoti behavior of (1.1) to be given by those \Feynman diagrams",without ever giving meaning to the integral (1.1) itself. I will very briey presentthese tehniques here. Further information an be found in any quantum �eld theorytextbook suh as [36, 21, 29℄.To illustrate the tehnique of Feynman diagrams, let us �rst look at a simpler�nite dimensional analogue | let L be a smooth real-valued funtion with �nitelymany stationary points fxigIi=1 on Eulidean spae RN (a `Morse' funtion), and letus try to understand the k !1 asymptotis of:Zk = ZRN dNx eikL:3In this formula, as throughout the rest of this thesis, the Einstein summation onvention applies| there is an impliit summation over indies (suh as i, a, �, : : :) that are repeated twie. Alsonotie the di�erene between trV and tr | in this thesis tr will always refer to an invariant bilinearform on a Lie-algebra, while trV is just the usual matrix trae in End[V ℄. Many times the subsriptV will be omitted and matrix traes will simply be denoted by tr.6



Namely, we will try to �nd onstants W0, W1, : : : so that asymptotiallyZk = ZRN dNx eikL �k!1 IXi=1W(i)0 eikL(xi) 1Xm=1 W(i)mkm : (1.4)1.2.2 The stationary phase approximationThe �rst step, even before Feynman diagrams are introdued, is to use the station-ary phase priniple whih says that to zeroth order in 1=k, the large k behavior ofR exp ikL is given byZRN dNx eikL �k!1 IXi=1 e i�4 sign L(xi)q(4�k)N jdetL(xi)jeikL(xi): (1.5)Here L(xi) is the Hessian matrix of L at xi. In other words, detL(xi) is the deter-minant of the operator L(xi) : TRNxi ! TRNxi de�ning (using the Eulidean innerprodut) the quadrati approximation to f(x) around xi. signL(xi) is the signatureof that quadrati approximation, i.e. the di�erene between the number of positiveand the number of negative eigenvalues of L(xi).The intuitive justi�ation of (1.5) is the following. When k is positive and largeand x is not near a stationary point, kL varies very rapidly around x, exp ikL osillatesvery rapidly, and therefore the points near x ontribute very little to R exp ikL. If xis near the stationary point xi, then in a oordinate system f�ng around xi in whihL(xi) is diagonal with eigenvalues f�ng we an approximateL(x) �x � xi L(xi) + NXn=1�n�2n:This means that the ontribution to R exp ikL from the points near xi an be approx-imated by eikL(xi) lim�!0 ZRN dN� exp NXn=1 ik�n�2n � ��2n! ; (1.6)where the onvergene fator���2n was inserted to aount for the anellations arisingfrom the rapid osillations of the integrand for large �. Computing the Gaussianintegral (1.6) and then taking the �! 0 limit, we get(1:6) = eikL(xi) NYn=1 e i�4 sign �n2q�kj�nj :Summing over the stationary points, this is exatly (1.5).A rigorous and more omplete treatment of the stationary phase priniple an befound in setion 7.7 of H�ormander's book [28℄.7



1.2.3 Feynman diagramsHaving omputed the k independent onstant fator Z in (1.4), we will next try tounderstand the part of (1.4) that does depend on k. For simpliity, let us now assumethat L has just a single stationary point on RN , that this point is the origin, thatL(0) = 0, and that L near 0 is given by the sum of a non-degenerate quadratiform and a ubi orretion to it. Therefore, the integral whose large k asymptotibehavior we want to determine is:Zk = ZRN dNx eik( 12�ijxixj+�ijkxixjxk): (1.7)The general ase is not any harder.By a simple hange of variables,~x! ~x0 = pk~x; (1.8)(suppressing primes) Zk = k�N=2 ZRN dNx ei 12�ijxixje ipk�ijkxixjxk (1.9)= k�N=2 ZRN dNx ei 12�ijxixj 1Xm=0 imm!km=2 (�ijkxixjxk)m: (1.10)And so the mth term in our asymptoti expansion will be given up to a multipliativeonstant by: ZRN dNx ei 12�ijxixj (�ijkxixjxk)m =this is a simple Gaussian integral, whih we an evaluate using standard methods:= "(�ijk�i��Ji �i��Jj �i��Jk )m ZRN dNx ei 12�ijxixj+iJixi# ~J=0/ "(�ijk�i��Ji �i��Jj �i��Jk )me�i 12�ijJiJj# ~J=0 ; (1.11)where �ij is the inverse of �ij: �ij�jk = Æi k.Now there are no more integrations to perform. The expression that we obtainedan learly be expanded further. The result of applying a di�erential operator to anexponential is a polynomial times that same exponential, and as we are evaluatingthis polynomial at 0, we are interested in its onstant term. If we apply the 3m di�er-entiations in (1.11) one at a time and use Leibnitz' rule to separate the derivatives to`those that at on the exponential' and `those that at on the polynomial' we see thatthe two types of di�erentiations have to be paired together | eah di�erentiationthat ats on the exponential `brings down' a fator J , and eah di�erentiation thatats on the polynomial eliminates suh a fator. Remembering from (1.11) that the8



di�erentiations ome in triples oupled by a �ijk, we an represent the 3m di�eren-tiations in (1.11) by m `ubi' verties, and every pairing that ontributes to (1.11)an be represented by a way of onneting these 3m verties to make a graph. Thegraphes that are reated in this way are alled Feynman diagrams. Eah vertex insuh a diagram ontributes a fator �ijk, and eah edge a fator �ij (oming fromthe exponent in (1.11)). In summary, to evaluate (1.11) we alulate a sum over allFeynman diagrams with m ubi verties of order three where the ontribution ofeah suh diagram is a produt of �ijk's for eah vertex and �ij's for eah ar.Example The term with m = 2 will be omputed as follows:W2 = "(�ijk�i��Ji �i��Jj �i��Jk )2 ZRN dNx ei 12�ijxixj+iJixi# ~J=0= "(�ijk�i��Ji �i��Jj �i��Jk )(�i0j0k0�i��Ji0 �i��Jj0 �i��Jk0 ) ZRN dNx ei 12�ijxixj+iJixi# ~J=0\=" 60B��ijk 1z}|{�i 2z}|{�j 3z}|{�k 1CA0B��i0j0k0 1z}|{�i0 2z}|{�j0 3z}|{�k0 1CA e���+90B��ijk 1z}|{�i 1z}|{�j 2z}|{�k 1CA0B��i0j0k0 2z}|{�i0 3z}|{�j0 3z}|{�k0 1CA e���= (num1)�ijk�i0j0k0�ii0�jj0�kk0 + (num2)�ijk�i0j0k0�ij�kk0�i0j0:The pairings in the last equation are represented by the following diagrams:'& $%ij k i0j 0k0 ��������ij k i0j 0k0It is not hard to see that in generalm is also equal to the number of independent loopsin a diagram. Therefore we will also all the m'th order term in suh an asymptotiexpansion the m-loop term. It is ustomary to all the ars of a Feynman diagrampropagators.1.2.4 Expetation values of polynomialsReall from (1.2) that the quantity that we are trying to ompute is not just R DAeikL,but it is the expetation value of a ertain funtion QOX ;R (A) of A with respet tothe measure eikLDA. The funtions O are written expliitly in (1.3) in terms of theirTaylor series expansion. Therefore, to understand the integral (1.2) we �rst have tounderstand integrals as in (1.7), only with an additional polynomial P (~x) multiplyingthe integrand. Moreover, after resaling ~x as in (1.8) and arrying out exatly thesame analysis as in (1.9) { (1.10) with an additional P (~x) multiplying eah integrand9



we see that in the mth order term in our revised asymptoti expansion will be givenby: Xm=m1+m2 ZRN dNx ei 12�ijxixjPm1(~x)(�ijkxixjxk)m2 ;where Pm1(~x) denotes the part of P (~x) whih is homogeneous of degree m1 in ~x.Notiing that just as before we ended up having to alulate the expetation valueof a polynomial �Pm1(~x)(�ijkxixjxk)m2� with respet to a Gaussian measure, we annow use the same triks and replae the above integral by a sum of `revised' Feynmandiagrams that are also allowed to have a single exeptional vertex of some order m1,weighted by the oeÆients of Pm1(~x).1.3 The gauge-�xed Lagrangian1.3.1 Gauge invarianeReall that M3 is an oriented three manifold, G is a Lie group with an invariantintegral bilinear form tr on its Lie algebra G and P ! M3 a prinipal G-bundle onM3.The Chern-Simons Lagrangian s(A) is de�ned for a onnetion4 A by:s(A) = 14� ZM3 tr(A ^ dA+ 23A ^ A ^ A);where tr(A1 ^ A2 ^ A3) def= 12(trA1 ^ [A2; A3℄) = 12 tr([A1; A2℄ ^ A3), and so relative tosome hoie of oordinates and a trivialization of P ,5s(A) = 18� ZM3�ijktr(Ai(�jAk � �kAj) + 23Ai[Aj; Ak℄):It is invariant under in�nitesimal gauge transformations in whih ÆA = �D def=�(d+ [A; ℄):4�Æs = � ZM3 tr ((d+ [A; ℄) ^ dA+ A ^ d[A; ℄+2(d+ [A; ℄) ^ A ^ A)= � ZM3 tr([A; ℄ ^ dA+ A ^ [dA; ℄� A ^ [A; d℄ + 2d ^ A ^ A)�2 ZM3tr[A; ℄ ^ A ^ A= ZM3tr  ^ [A; [A;A℄℄ = 0:4We will be slightly impreise and regard A as a G-valued 1-form on M3.5In the formula below �ijk denotes the totally antisymmetri tensor in three dimensions | �ijk =sign (ijk) if ijk is a permutation of f1; 2; 3g and �ijk = 0 otherwise.10



This implies that s(A) is invariant under gauge transformations that an be pathwiseonneted to the identity transformation. As it turns out (see [17℄), s(A) is notinvariant under general gauge transformations and, in fat, in our normalization it isde�ned only up to a multiple of 2�. This explains our hoie of the normalization |we have hosen preisely that normalization for whih the exponential in (1.1) is wellde�ned.The gauge invariane of s(A) has an unpleasant onsequene | the stationarypoints of are neessarily not isolated, and the quadrati part of s(A) near a stationarypoint annot be non-degenerate. The disussion of Feynman diagrams in the previoushapter depended in an essential way on the invertability of that quadrati part, andtherefore annot be applied here without modi�ation.1.3.2 The Faddeev-Popov proedureTo resolve the above ompliation we will one again look at our �nite dimensionalanalogue, assume that the Lagrangian there, 12�ijxixj+�ijkxixjxk, is invariant underthe isometrial non-degenerate ation of an l-dimensional Lie group G, and try toevaluate the integral (1.7) without redundant integration over the orbits of G.We will visit eah orbit of G just one by hoosing a funtion F : Rn ! Rl thathas a unique zero on eah G-orbit, and inserting a Æl(F (~x)) into the integral. If wewant the result to be the same as the full integration and independent of F we needto add a orretion term that orresponds to the volume of the G-orbit through ~xand as the ation of G is by isometries this term an be alulated loally at a point~x satisfying F (~x) = 0. It is given by the inverse ratio of the volume element of theLie-algebra G of G and its image in Rl under the ation of G omposed with F . Thatis to say | we have to look at6:Z = ZRN dNx eik( 12�ijxixj+�ijkxixjxk)Æl(F (~x)) det �F a�Gb ! (~x):(fGbglb=1 is a set of generators for G)We will try to �nd a diagrammati representation for the asymptoti expansionof Z. The �rst additional term in the integral is easy | we an just replae it by itsFourier representation: Æl(F (~x)) = ZRl dl� eiFa(~x)�aand then inorporate F a(~x)�a as a new term in the Lagrangian. The other newterm, det ��F�G �, an be dealt with in two equivalent ways. The �rst way is to do theusual resaling (1.8) and then to expand det ��F�G � in powers of 1pk by �rst separatingdet ��F�G � to a onstant part J0 and a part J1(~x) whih is a series in 1pk , and then6This expression for Z was �rst derived by Faddeev and Popov in [20℄.11



using det J0 + 1pkJ1(~x)! = det(J0)Xm  1pk!m tr(VmJ�10 )(VmJ1(~x)): (1.12)(Vm J is the mth exterior power of the matrix J). Notie that J0 is just a onstantmatrix, while J1(~x) depends on ~x. It will now be possible to regard (1.12) as apolynomial in ~x and get a Feynman diagram expansion. It is an exerise in elementaryalgebra to show that the polynomial (1.12) an itself be inorporated into the theFeynman diagrams by introduing a new type of propagator denoted by direteddotted lines that orresponds to J�10 and a olletion of new types of verties eahonneting two dotted propagators with some dashed propagators | depending onthe exat form of J1(~x). (There will also be some alteration to the ombinatorial ruleof determining the numerial fator multiplying eah diagram).The other way of dealing with det ��F�G � is the one ommonly used in the physisliterature and the one that we will be using here. It involves the idea of anti-ommutative integration. Non-ommutative integration is treated in many plaes(see e.g. [9, 36, 21, 29℄), and I will not explain it here in detail. Very briey, `anti-ommuting' variables (alled `ghosts') f�agla=1 and fbglb=1 are introdued togetherwith a reasonable set of rules of integration with respet to them, and it is shownthat for any matrix Jab Z dl�dle�aJabb / det(J): (1.13)(This is analogous and omplementary to standard Gaussian integration | in whihthe resulting determinant is in the denominator).Using this, Z an �nally be written asZ / ZRN dNx ZRl dl� Z dl� dl ei(k( 12�ijxixj+�ijkxixjxk)+Fa(~x)�a)+�a( �Fa�Gb )b = Z eiLtot:Now we an use almost the same proedure as in (1.9) { (1.11) to get a diagrammatiexpansion for the asymptoti behavior of Z. Again it turns out that this involvesintroduing a new propagator and some new verties.As we will see below for the ase of interest for us | the Chern-Simons Lagrangian| we will be able to hoose F in a way so that the quadrati part of the supplementedLagrangian will indeed be invertible.1.3.3 Gauge-�xing for the Chern-Simons ationLet A0 be an arbitrary stationary point for s, i.e.: ÆsÆA (A0) = 0, whih means FA0 =dA0 + 12 [A0; A0℄ = dA0 + A0 ^ A0 = 0, let D denote the exterior derivative d twistedby A0, and for A an ad(P )-valued 1-form on M3 de�ne L(A) = s(A0 + A):L(A) = s(A0 + A) = s(A0) + 14� ZM3 tr(A ^DA+ 23A ^ A ^ A):12



Choose a trivialization of P , loal oordinates fxig and a metri gij on M3 withg def= det(gij), and get (DA)ij = �iAj � �jAi + [A0i; Aj℄;and Di def= pggijDj = pggij�j +pggij[A0j; �℄:Pik the gauge ondition k2�DiAi = 0, and get using the Faddeev-Popov proedure asdesribed in the previous subsetion:Ltot(A; �; ; �) = kL+ Lgauge��xing + Lghosts= ks(A0) + k4� ZM3 tr(A ^DA+ 23A ^ A ^ A)+ k2� ZM3 tr ��DiAi � i�Di(Di + ad Ai)� (1.14)�, , and � are Lie-algebra valued �elds | � = �aGa,  = aGa, and � = �aGa for a setof generators fGag of G.
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Chapter 2The Feynman rulesIn this hapter we will write the Feynman rules for the Chern-Simons theory, de�nedby the total Lagrangian (1.14). Looking at (1.14) we see that the quadrati part ofour total Lagrangian deouples to a sum of two quadrati forms, one involving A and�, and one involving � and . Therefore, in the diagrammati expansion of R eiLtotthere will be two types of propagators | a dashed line (� � � � ) representing theinverse of the A� quadrati form, and a direted solid line (�������!) representingthe inverse of the � quadrati form. One an also see that the ubi part of Ltot isthe sum of two terms. The �rst of these two terms is 23A ^A ^ A and it orrespondsto an order 3 vertex onneting three dashed lines. The seond is �Di[Ai; ℄ andit orresponds to an order 3 vertex onneting an inoming direted solid line, anoutgoing direted solid line, and a dashed line. Also, reall that we are not justomputing R eiLtot, but something slightly more ompliated | R QOeiLtot. Lookingat equation (1.3), we see that the inlusion of the O's amounts to adding a vertex ofa third type in whih a dashed line ends on an ellipse that represents a omponent ofthe knot.Other then what was said above, I will skip the preise derivation of the Feynmanrules, and just desribe the end result in the next few pages. For simpliity we willrestrit our attention to the ase of a single (direted) knot X = fXg. There is nodiÆulty to restrit the rules given below to the ase were there is no knot and weare trying to ompute a 3-manifold invariant, or to enhane these rules to the aseof a many-omponent link. X will be given by a parametrization X(s) : S1 ! M3,where S1 is the oriented unit irle.2.1 The diagramsPik an integer m, the order, the number of loops. To obtain the m'th invariantWm(X), �rst write all inequivalent onneted1 Feynman diagrams of order m. A1Restriting our attention to onneted diagrams orresponds to omputing the asymptotis ofW(M3; X; k)=W(M3; k) instead of that of W(M3; X; k).14



Feynman diagram of order m is a diagram made of a single2 direted ellipse (alled aWilson loop) representing the knot X , a total of 2m ubi verties of three di�erenttypes | type X2A, type �A, and type A3, and lines (alled propagators) onnetingthose verties. There are two types of propagators. The gauge propagators denotedby dashed lines � � � � , and the ghost propagators denoted by direted solid lines�������!. The three types of verties di�er by the types of propagators they areallowed to onnet. In a type X2A vertex a gauge propagator meets the Wilson looprepresenting the knot. A type �A onnets a gauge propagator with one inoming andone outgoing ghost propagators. Finally, in a type A3 vertex three gauge propagatorsmeet. Figure 2.1 is an example for suh a diagram. When looking at that �gure,remember that our diagrams are not allowed to have higher than ubi verties. It istherefore impliitly understood that when four or more lines meet at the same point,that point is not a vertex and those lines pass eah other without \interation".
Figure 2.1. An example for a Feynman diagram of order 4, having 5 type X2Averties, 2 type �A verties, one type A3 vertex, 5 gauge propagators, and 2ghost propagators.Two diagrams are alled equivalent if one an set a bijetive type-preserving orre-spondene between their verties, in a way that orresponding verties are onnetedby the same type, same orientation, and the same number of propagators and Wilsonloop segments.For example, ifm = 2, the �ve3 diagrams that we write in this stage are illustratedin �gure 2.2.

Figure 2.2. The �ve diagrams of order 2.2Of ourse, if we were dealing with a link with � omponents we would have had � Wilson loops.3Atually, few more suh diagrams an be written | but the ones that are not shown in the�gure are all singly onneted | namely, they an be broken apart into two omponents by theremoval of a single ar. It is easy to see that suh diagrams have a vanishing Lie-algebrai oeÆientif the onnetion A0 of the setion 1.3.3 is the zero onnetion on a trivial bundle. We will ignorethese diagrams below. 15



2.2 The proedureOur invariantWm(X) will be a sum of �nite dimensional integrals, one orrespondingto eah Feynman diagram. Let us onentrate in a single diagram D, and see how towrite the �nite dimensional integral orresponding to it. This will be done in severalsteps:1. Mark the parts D as follows. Mark every end of every gauge propagator with alowerase letter from i, j, : : : (thought to represent a spatial index | an integerin f1; 2; 3g). Mark every type �A or type A3 vertex by a letter from x, y, : : :(thought to represent a point in M3). Add a lowerase letter from a, b, : : :(thought to represented a basis element of G) to every end of every propagator.Finally pik a base point on the Wilson loop and follow the loop aording to itsorientation marking the X2A verties enountered along the way by s1, s2, : : :(representing points in the parameter spae S1 of X) and marking the segmentsof the Wilson loop ut by these verties by lowerase greek letters suh as �,�, : : : (thought to represented a basis element of the representation R). For anexample, see �gure 2.3.
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Figure 2.3. An unmarked diagram and its marking.2. If D is a marked diagram, onstrut an algebrai expression E(D) by taking aprodut of terms, eah orresponding to a part of the diagram D as follows:(a) For eah gauge propagator in D, marked, say, as i; a i0; a0� � � �x y take the termV aa0ii0 (x; y): (2.1)V abIJ (x; y) is de�ned to be the inverse of the bosoni free part of the La-grangian L. The symbols \I" and \J" are either numbers i; j in the range1 � 3, or the symbol �, and with this understood V is de�ned by therelations: (the di�erentiations4 are all with respet to x.)tabDipggijV bj�(x; y) = 2�iÆaÆ(x; y);4Remember that D is the ovariant derivative with respet to the onnetion A0.16



tabDipggijV bjk (x; y) = 0;tab ��ijkDjV bkl (x; y) +DiV b�l (x; y)� = 2�iÆaÆilÆ(x; y);tab ��ijkDjV bk�(x; y) +DiV b��(x; y)� = 0:If one (or both) of the ends of a ertain gauge propagator is an X2A vertex,marked by a point s in the parameter spae of X, for the purposes of thisonstrution simply replae it by the point X(s) 2M3. For example,l; f l0; f 0� � � �z s1 �! V ff 0ll0 (z;X(s1)):(b) For eah ghost propagator in D, marked, say, as d0 d�������!y z take the termGd0d(y; z):G is de�ned to be the inverse of the ghost free part of the Lagrangian L| that is to say, it is de�ned by the relation: (the di�erentiations are allwith respet to x.) tabDiDiGb = �2�ÆaÆ(x; y):() For eah marked A3 vertex in D use the rule
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i �! i2� ZM3 dx tab�ijk: (2.2)The symbol tab essentially represents the struture onstants of G | tode�ne tab we pik a basis fGag of G, ompute the struture onstants[Ga;Gb℄ = f abG and use the bilinear form tr to `lower' the index : tab =f dabtd where tab = tr(GaGb).(d) For eah �A vertex in D use the rule
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lz �! 12� ZM3 dz tdfeDlz: (2.3)Here Dlz denotes di�erentiation with respet to zl,Dlz = pgglm DDzmating only on the z-dependene of the term oming from the ghost propaga-tor leaving the vertex. For a better understanding, let us look at this term17



together with the terms orresponding to the propagators surrounding ourvertex:
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wlz �! 12� ZM3 dz tdfe �pgglm DDzmGee0(z; x)��Gd0d(y; z)V ll0ff 0(z; w)(e) For eah marked X2A vertex in D use the rule��f 0l0 s1 �! �R�f 0 _X l0(s1): (2.4)Here R�a� is simply the representation R expressed in terms of matries |if fr�gdimR�=1 is a basis of R, then R(Ga)r� = R�a�r�.(f) Notie that by the restritions we have on the types of allowed verties inD, the ghost propagators must form a set of disjoint losed loops. The lastterm in E(D) will be (�1)F ; (2.5)where F is the number of suh loops.3. Now integrate the variables s1, s2, : : : over S1 preserving their yli order.4. Divide the resulting integral by a ombinatorial fator, S(D). For a diagramD, S(D) is the total number of symmetries of D. A symmetry of a digram Dis a bijetive self-map on the set of verties and ars in D, whih sends a vertexto a vertex of the same type, a propagator to a propagator of the same type,a Wilson loop segment to a Wilson loop segment, and preserves beginning andend points | the image of the beginning and end points of an ar have to bethe beginning and end points of the image of that ar. For example, the weightsS(D) of the �ve diagrams in �gure 2.2 are 4, 2, 2, 4, and 3 respetively, whilethat of the diagram in �gure 2.3 is 1.Example The omplete expression orresponding to the diagram in �gure 2.3 isi8�3 Zs1<s2<s3ds1�3 Z d3xd3yd3z ta0d0e0tdfetab�ijkR�f 0Rb0�R�0�� _X l0(s1) _Xj0(s2) _Xk0(s3) �Di0yGd0d(y; z)� �DlzGee0(z; y)��V aa0ii0 (x; y)V ff 0ll0 (z;X(s1))V bb0jj0 (x;X(s2))V 0kk0 (x;X(s3))(In this integral the domain de�nition s1 < s2 < s3 should be read as `the set of alls1;2;3 2 S1 for whih s2 is between s1 and s3 in the hosen orientation of S1', and notas a linear ordering relation). 18



Chapter 3The one-loop ontribution
3.1 When M 3 = R3Having developed a general tehnique in the previous hapters, let us now try to applyit in few partiular ases, and let us start from the simplest ase | the ontributionof order 1=k toW(at R3;X ) where X is a one- or two-omponent link in R3. Thereis just one at onnetion on R3 | the trivial one | and we take it to be thebakground onnetion A0. In this simple ase the ghosts and the interation termA^A^A don't yet ome into play, and of the in�nitely many terms in the expansionof Pexp only terms up to the seond order term will be relevant. That is to say, wejust need to understandW 0 = ZADAD� e ik4� RR3 tr(�ijkAi�jAk+2��iAi)2Y=1�dimR + Z ds _X i(s)Aai (Xg(s))R�a�+ Zs1<s2ds1;2 _X i1g (s1) _X i2 (s2)Aa1i1 (X(s1))Aa2i2 (X(s1))R�1a1�2R�2a2�1�This is just a simple Gaussian integral. We an regard � as a (Lie algebra valued)three-form on R3, A as a one-form, and write the quadrati form in our Gaussianintegral as 12 i2� ZR3 tr ��ijkAi�jAk + 2��iAi� = 12 i2� * A� ! ; L�  A� !+for L� def= (d?+?d)J , where JA def= A and J� def= ��. Clearly (L�)2 = � and thereforeV , whih is essentialy the inverse of L�, is given by V = 2�iL� Æ G� where G� isthe Green's funtion of the (vetor + salar) Laplaian �. In the Eulidean ase thisGreen's funtion G� is given byGab� (x; y) = tab4�jx� yj (tab is the inverse of tab def= tr(GaGb))19



for both the salar and the vetor ases, and so the A part of our propagator is givenby x y� � � �a; i b; jV abij (x; y) = hAai (x)Abj(y)i = 2�i�ikj�kx tab4�jx� yj = �ijktab i(x� y)k2jx� yj3 :The terms of order 1=k are given by the diagrams in �gure 3.1.
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2XFigure 3.1. First order diagrams3.2 The linking number of two knotsLet us �rst onsider the left most diagram. Ignoring the onstant numerial oeÆientthat the representations R1;2 ontribute it orresponds to the integral$(X1; X2) = Z ds1ds2Vij(X1(s1); X2(s2)) _X i1 _Xj2 (3.1)whih is the well known Gauss integral representation for 2�i times the linking numberof two knots [38℄. For the sake of ompleteness, and also as a preparation for the nexthapter where we will use similar but more ompliated onsiderations to deal withthe two loop ontribution, we will review here the proof of the invariane of (3.1)under isotopies and show that indeed it oinides with the linking number.It is possible to view Vij(x; y) is as a (1; 1)-form1 onR3�R3 where (x; y) 2 R3�R3,i is the one form index for the variable x, and j is the one form index for the variabley. Viewed this way, (3.1) is just that form V evaluated on the yle X1 relative to itsleft variable and on the yle X2 relative to its right variable:$ = hX1jV jX2iThe key property required for the invariane proof is that there exists a (2; 0)-formF for whih dLV = dRF (3.2)1An (m;n)-form onM�N whereM and N are smooth manifolds is a setion of ��MTM
��NTNwhere �M :M�N !M and �N :M�N ! N are the projetions. Clearly, one an de�ne operatorsdL : f(m;n)-formsg ! f(m+1; n)-formsg, dR : f(m;n)-formsg ! f(m;n+1)-formsg, et. in analogywith the standard de�nitions of de-Rham theory.20



away from the diagonal, where dL is the exterior derivative with respet to the leftvariable and dR is the exterior derivative with respet to the right variable. Assumingsuh an F , under an in�nitesimal deformation of X1 we will have (using Stoke'stheorem twie)Æ$ = ÆhX1jV jX2i = hThe surfae S spanned by thein�nitesimal deformation of X1jdLV jX2i = hSjdRF jX2i = 0: (3.3)As for the existene of F , notie that by our derivation of V , V = 2�i ? d Æ Gvwhere Gv is the vetor part of G�, and therefore ?LdLV = 2�i ? d ? d Æ Gv. Bythe ommutativity of ?d and Gv one gets ?LdLV = 2�iGv Æ ?d ? d. Rememberingthat Gv is given by an integral kernel, one an integrate by parts Gv Æ ?d ? d to get?LdLV = 2�i ?R dR ?R dRGv = 2�i(�R + dR ?R dR?R)Gv = 2�iI + 2�idR ?R dR ?R Gv.Multiplying from the left by ?L we obtain:dLV = dR2�i ?L ?RdR ?R Gv + 2�i ?L I def= dRF + 2�i ?L I:The formula we just got for F an be expanded to giveFij;�(x; y) = �ijk i(x� y)k2jx� yj3 ;and this an be used to verify (3.2) diretly. Don't let yourself be mislead by theapparent equivalene of the formulae for V and for F ! The indies are arranged alittle di�erently and verifying (3.2) is a little more than just playing around withthese indies | some di�erentiations do have to be arried out and the veri�ationis essentially the same alulation as the derivation in this paragraph.Having shown that $ is indeed an isotopy invariant we an now use it to showthat it oinides with 2�i times the linking number. Deform the knot so that it willbe almost planar with only `perpendiular rossings'. Now ip one of those rossingsus shown in �gure 3.2. Clearly, when omparing the ontribution to $ from before
Figure 3.2. Flipping a rossingand from after the ip we an integrate the propagator with its endpoints only nearbythe rossing. If the rossed ars are � apart,$(after)� $(before) = i Z ds1;2 �(�2 + s21 + s22)3=2 = 2�i: (3.4)21



This is exatly the same relation is satis�ed by 2�i times the linking number, andtogether with $(unlinked irles) = 0 (3.4) proves that $ is indeed 2�i times thelinking number. To see that indeed $(unlinked irles) = 0, use the already provenisotopy invariane to make sure that the two irles are very small relative to theseparation between them and then the integral de�ning $ will tend to zero.3.3 The self-linking of a single knotThe situation with the other diagrams in �gure 3.1 is a bit more ompliated. Let$s(X1) be the `self-linking' of X1:$s(X1) def= 12hX1jV jX1i = 12 Z ds1ds2Vij(X1(s1); X1(s2)) _X i1(s1) _Xj1(s2): (3.5)(We have suppressed here the Lie-algebra oeÆient whih for R being the de�ningrepresentation of G = SU(N) in CN and for tr being the usual matrix trae an beseen to equal N2 � 1. For more details see hapter 9).For three vetors A;B;C it will be onvenient to denote �ijkAiBjCk, the volumeof the parallelepiped spanned by ~0; A; B; C by det(AjBjC). Using this notation$s(X) = i4 Z ds1ds2det (X(s1)�X(s2)j _X(s1) ��� _X(s2)�jX(s1)�X(s2)j3 : (3.6)This integral appears at �rst sight to be divergent beause of the ubi term in thedenominator. Nevertheless when s1 and s2 are lose, say � apart, X(s1)�X(s2) � �and the three vetors X(s1)�X(s2), _X(s1), and _X(s2) are within a one of opening� �. Therefore the volume of the parallelepiped spanned by these three vetors is� �3 whih is enough to suppress the singularity of the denominator. Unlukily, theargument in (3.3) doesn't go through | the key relation (3.2) holds only away fromthe diagonal, and in (3.5) our integration domain does interset the diagonal.This point has already been treated by C�aalug�areanu [13, 14℄ (see also Pohl [34℄)and later from a physial viewpoint by Polyakov [35℄ (see also Tze [40℄). They foundthat indeed (3.5) is not an invariant, but yet it an be renormalized by the additionof a loal term (essentially the total torsion of X) to give an invariant. It turns outthat to properly de�ne the torsion everywhere X needs to be `framed', and therefore$s will just be an invariant of framed knots. We will arrive at the same results usinga somewhat di�erent regularization whih makes the urrent alulation a bit lesstransparent but has a more straightforward generalization for the two-loop ase to betreated in the next hapters. Let us de�ne $� by the integral (3.6) that de�nes $s,only with the integration domain restrited to�� def= [js1 � s2j > �℄:Assume that X undergoes an in�nitesimal deformation X ! X+ÆX def= X+!. As inthe invariane proof for the ase of a link, (3.3), Stoke's theorem was used twie it will22



fail twie for this new ase and Æ$� will pik up four non-zero ontributions | one fromeah boundary term in eah of the usages of Stoke's theorem. Denoting the evaluationof di�erential forms on �� by h j j i� and on its two boundaries [s1 � s2 = ��℄ byh j j i� we will get: (S again is the surfae spanned by the in�nitesimal deformationof X) Æ$� = 12ÆhXjV jXi�= hSjdLV jXi� + h!jV jXi+ � h!jV jXi�= hSjdRF jXi� + h!jV jXi+ � h!jV jXi�= hSjF j�i+ � hSjF j�i� + h!jV jXi+ � h!jV jXi�: (3.7)We will try to understand the �! 0 limit of Æ$� by expanding (3.7) in powers of�. For s a variable in S1 let X = X(s), _X = _X(s), ! = !(s); : : : ;X�� = X(s� �) � X � � _X + �22 �X � �36 ...X_X�� = _X(s� �) � _X � � �X + �22 ...XUsing these notations, with the dummy integration variable s piked to be at thepoint where ! is evaluated,h!jV jXi� = i2 Z dsdet � _X��j!jX�� �X�jX �X��j3� i2 Z dsdet � _X � � �X + �22 ...Xj!j � � _X + �22 �X � �36 ...X�jX �X��j3� i2 Z ds�2 det �12 �X � �3 ...Xj!j _X � �2 �X�j�j�3j _Xj�3 �1� �3 _X� �X2j _Xj2 � :Therefore (notie that the terms of order 1� anel!)h!jV jXi+ � h!jV jXi� � i2 Z dsj _Xj3  �3 _X � �X2j _Xj2 det( �Xj!j _X) + 23 det( ...Xj!j _X)! :Similarilly hSjF j�i� = � i2 Z dsdet( _Xj!jX�� �X)jX�� �Xj3� � i2 Z ds j _Xj3j�j  1� �3 _X � �X2j _Xj2 !det� _X����! ����12 �X � �6 ...X�and therefore (notie that again there is no term of order 1� )hSjF j�i+ � hSjF j�i� � i2 Z dsj _Xj3  �3 _X � �X2j _Xj2 det( �Xj!j _X) + 13 det( ...Xj!j _X)! :23



This �nally gives that the �! 0 limit of Æ$� is2Æ$s = i2 Z dsj _Xj3  �3 _X � �Xj _Xj2 det( �Xj!j _X) + det( ...Xj!j _X)! (3.8)and we an see that indeed Æ$s 6= 0 and $s is not a knot invariant.3.4 The appearane of framingsYet, some further investigation of Æ$s shows that this an be orreted quite easily.De�ne � to be i=2 times the total torsion of the urve X | that is to say i=2 timesthe integral with respet to ar length of the loal torsion �(s) (see [18, pp. 22℄) ofthe urve, given by the standard formula�(s) = �det( _X(s)j �X(s)j ...X(s))j _X(s)� �X(s)j2 (3.9)whenever the denominator is non-zero. As I will omment below, under X ! X + !one an show that Æ$s and �Æ� are given by exatly the same formula (3.8) so if onede�nes $r = $s + �then $r is invariant under isotopies, so long as the denominator in (3.9) remainsnon-zero.What if that denominator is equal to zero? On the normal bundle of X there is aanonially de�ned onnetion de�ned by the projetion bak to the normal bundleof the usual di�erentiation along the knot of vetor funtions normal to it. i=2 timesthe total holonomy of that onnetion along the knot is some imaginary number,well de�ned up to a multiple of �i whih depends on a hoie of a trivialization forthe normal bundle, and whenever � is de�ned, it will be shown below to oinidewith that number. Hene $r is an invariant of framed knots | a framing is just atrivialization of the normal bundle whih an be used to render � and therefore $swell-de�ned. This neessity of framing the knot X agrees with the results of Witten[42℄, but makes $r quite useless for an unframed knot | it is a multiple of �i whihis well-de�ned only up to a multiple of �i. For a framed knot it an be shown alongthe same lines as in (3.4) to be �i times the self-linking of a framed knot | �i timesthe linking number of that knot with its framing.To omplete the disussion we need to demonstrate the two di�erential geometriassertions made above. Very briey, if n(s) is any vetor not tangent to the knot Xthen the holonomy disussed above an be alulated by measuring how muh the2It is not hard to verify that the operations of taking the variation under X ! X + ! and oftaking the �! 0 limit ommute. A harder hek of the same kind is desribed at the end of setion4.3.3. 24



projetion of n to the normal bundle fails to be parallel. It is an elementary exeriseto then �nd that relative to the framing given by n,� = �i2 Z dsj _Xj det _Xj _Xj2 �����n ����� j _Xj2 _n� ( _X � n) �Xj _X � nj2 ! : (3.10)Setting n = �X it is easy to see that (3.10) oinides with (3.9) and hoosing n tobe a onstant vetor that is not parallel to _X(s) for any value of s simpli�es it themost. One an then vary (3.10) under X ! X + ! and integrate by parts until allthe derivatives of ! disappear. One is left with a huge and unfriendly expressionthat with a tremendous amount of labor and juggling with vetor identities an beshown to equal (3.8). I ould not verify this equality without the aid of a symbolimathematis omputer program [48℄.3.5 Appendix: The torsion of a spae urveWhy is it that the relatively ompliated alulation of (3.7)-(3.8) gives the relativelysimple answer (3.8)? How an we be assured that when onsidering higher order per-turbative invariants we will not get uglier formulas for Æ$s for whih the orretingproedure of the previous setion will not work? A partial answer to these ques-tions will be presented in this appendix | we will see that Æ$s an essentially beharaterized as the only funtional that has ertain invariane properties, and thatthese invariane properties an be dedued diretly from the de�nition of Æ$s as thevariation of (3.5).Let us start with a de�nition. A 1-form 
 on the spae � of smoothly immersedparametrized urves in R3 will be alled a loal variation form if it has the followingproperties:1. It is loal. Namely, if X : S1 ! R3 is a smoothly immersed parametrized urveand ! : S1 ! TR3 = R3 is a tangent to �, then 
X(!) is given given by theinner produt of ! with a vetor valued polynomial P in j _Xj�1 and �nitelymany derivatives of X:
X(!) = ZS1 ds DP (j _Xj�1; _X; �X; : : :); !E :The oeÆients of P are, of ourse, expeted to be independent of X and of !.The polynomial P is uniquely determined by 
.2. It is invariant | it is independent of the parametrization of X. Namely, iff : S1 ! S1 is an orientation preserving di�eomorphism, thenP (X Æ f) = _fP (X) Æ f: (3.11)3. It is losed as a 1-form on �. Namely, if Æ denotes exterior di�erentiation on �,then Æ
 = 0. 25



4. It is SO(3)-invariant. Namely, if r is a rotation in SO(3), then P (r Æ X) =r Æ P (X).5. It has a vanishing saling dimension. Namely, if C : R3 ! R3 is the map givenby multipliation by a onstant , C(x) = x, then P (C ÆX) = �1P (X).It is easy to verify on apriori grounds that Æ$s is a loal variation form | the lastfour properties follow immedietly from the de�nition of $s in (3.5), while the �rstproperty follows after a short glane at (3.7).Theorem 1 The form 
0 given by
0X(!) = ZS1 ds * 1j _Xj3  �3 _X � �Xj _Xj2 _X � �X + _X � ...X! ; !+is a loal variation form and every loal variation form is a onstant multiple thereof.Proof The fat that 
0 is a loal variation form follows from the fat that Æ$s issuh a form, and the omputation in setion 3.3 whih identi�ed Æ$s to be 
0=4�.The uniqueness of 
0 will be proven by writting the most general SO(3)-invariant Pof vanishing saling dimension and adjusting the oeÆients so that it will be losedand parametrization independent.By a simple enumeration, the most general SO(3)-invariant P of vanishing salingdimension, whih furthermore sales as (3.11) for loally onstant resallings of theparameter s isP (X) = a1 1j _Xj2 ...X + a2 _X � ...Xj _Xj4 _X + a3 _X � �Xj _Xj4 �X + a4 j �Xj2j _Xj4 _X + a5 ( _X � �X)2j _Xj6 _X+ b1 1j _Xj3 _X � ...X + b2 _X � �Xj _Xj5 _X � �X: (3.12)Let f be an orientation preserving di�eomorphism of R. Simple appliations of thehain rule of elementary alulus yield(X Æ f)0 = _f _X Æ f; (X Æ f)00 = �f _X Æ f + _f 2 �X Æ f;(X Æ f)000 = ...f _X Æ f + 3 �f _f �X Æ f + _f 3 ...X Æ f: (3.13)It is now an easy task to substitute the derivatives of X Æ f into (3.12) and to lookfor onstants a1�5, b1;2 for whih the equality (3.11) holds. The result is that thereare three linearly independent solutions:P 0(X) = �3 _X � �Xj _Xj5 _X � �X + 1j _Xj3 _X � ...X; (3.14)P 1(X) = 1j _Xj2 ...X � _X � ...Xj _Xj4 _X � 3 _X � �Xj _Xj4 �X � j �Xj2j _Xj4 _X + ( _X � �X)2j _Xj6 _X (3.15)P 2(X) = j �Xj2j _Xj4 _X � ( _X � �X)2j _Xj6 _X (3.16)26



P 0 is the polynomial that gives rise to 
0, and we just have to prove that no otherlinear ombination of P 0, P 1, and P 2 is losed. As P 0 is odd under a reversal of theorientation of the ambient R3 while P 1 and P 2 are even under suh a reversal, we anrestrit our attention to ombinations of the form 1P 1 + 2P 2. Let us pik suh aombination P , and let us denote the orresponding 1-form on � by 
 = 1
1+2
2.To show that 
 is not losed, it is enough to �nd two vetor �elds !1;2 on � and apoint X 2 � for whih Æ
jX (!1; !2):Pik the point X 2 � to be the unit irle in the xy-plane with its naturalparametrization, and let the vetor �elds !1;2 be given in a small neighborhood ofX by two orthogonal setions of the normal bundle of X that `rotate' around X aertain number n of times | as shown in �gure 3.3. Let as now look for terms of

Figure 3.3. The irle X and two orthogonal in�nitesimal deformations thereofthat `rotate' around it n = 3 times. One of the vetor �elds is illustrated by fulllines and the other by dashed lines.order n3 in Æ
(!1; !2). AsÆ
(!1; !2) = ZS1 ds  ÆP Æ!1 � !2 � ÆP Æ!2 � !1! ;it is lear that suh terms an ome only from the variations of terms in P  thatinvolve the third derivative of X. The �rst suh term is 1 ...X=j _Xj2, and its variationis 1  !2 � ÆÆ!1 � !1 � ÆÆ!2! ...Xj _Xj2 = 1j _Xj4 �2( _X � _!2)( ...X � !1)� 2( _X � _!1)( ...X � !2)+j _Xj2( ...!1 � !2 � ...!2 � !1)� :27



Remembering that j _Xj = 1 and that ...!1 � !2 = � ...!2 � !1 � (onst)n3 6= 0, we see thatthe �rst term in P  gives a non-vanishing ontribution of order n3 to Æ
, proportionalto 1. Similarly we an ompute (keeping only terms of order n3)1  !2 � ÆÆ!1 � !1 � ÆÆ!2! _X � ...Xj _Xj4 _X � 1 �( _X � ...!1)( _X � !2)� ( _X � ...!2)( _X � !1)� = 0using the orthogonality of _X and !1;2.Therefore, in order to have Æ
(!1; !2) = 0 we must have 1 = 0, namely 
 =2
2. Computations of exatly the same nature as the above now show that in orderto have no term proportional to n in Æ
(!1; !2) we must have 2 = 0. 2Remark The above theorem and the results of the previous setion ombine intoa somewhat amusing property of the total torsion of a spae urve | it an berepresented as an integral of a loal quantity (3.10), but not in a anonial way ((3.10)depends on the non anonial hoie of n, and (3.9) is ill de�ned for some urves).Yet its variation Æ� = �Æ$s = �i
0=2 an be represented anonially as the integralof a loal quantity, and it is the only global quantity (of vanishing saling dimension)whose variation an be represented in a parametrization independent manner.Remark The only diret proof I know for the ruial equality Æ� = �i
0=2 isdesribed in the paragraph proeeding (3.10). This proof is very tedious and usesa omputer for some of the algebra involved. However, there are simple argumentsthat establish diretly that Æ� = �Æ$s (see e.g. [34℄). In setion 3.3 we saw thatÆ$s = i
0=2, and the last two fats together onstitute a reasonably simple proof ofthe equality Æ� = �i
0=2.Remark In terms of the Frenet frame (T;N;B) (see [18℄), we haveP 0(X) = _�B � ��N:
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Chapter 4The two-loop ontribution
4.1 Statement of the problemLet X be a parametrized knot in R3. In this hapter we will try to understand thetwo-loop ontributionW2 toW(at R3;X ) | the ontribution of order �4�2=k2. Allthe terms in the Lagrangian Ltot ome in to play now, and on a at R3 our W readsW(at R3;X ) = Z DAD�DD� trRPexp�Z ds _X i(s)Ai(X(s))� eiLtotwhereLtot = k4� ZR3 tr��ijkAi�jAk + 2��iAi + 13�ijkAi[Aj; Ak℄ + 2��i(�i+ [Ai; ℄)�If R is a unimodular1 representation, terms that have only one interation pointwith X have a vanishing oeÆient and therefore the only potential ontribution attwo-loops ome from the �ve diagrams in �gure 4.1.The �rst two diagrams are divergent beause of the integration over the loationof the interation verties in R3. But as is readily veri�ed and as was shown in [24℄the integrands in these diagrams are exatly the opposites of eah other so if we sumthem before integrating we get zero. (We will aept at fae value that A and Banel and prove that C +D +E is a topologial invariant. It is very likely that thefull story is a little more elaborate. In the ontext of a onsistent regularization thatould be used to all orders, A and B are likely to anel only up to an imaginarymultiple of the one loop ontribution and thus what is alulated here is just the realpart of the two-loop ontribution. See hapter 5 and [33, 2, 16℄). Also, it is lear thatif one ignores the Lie-algebra oeÆients of diagrams C and D and the ombinatorialoeÆients S(C) and S(D) then their sum is equal to the square of the one-loop one-knot ontribution that was disussed in the previous hapter. It is therefore possibleto subtrat fromW2 a multiple of (W1)2 in suh a way that diagram C will disappear.We will all the resulting quantity Ŵ2. The oeÆient of diagramD in Ŵ2 will be the1Namely, a representation by linear operators of trae zero.29



ED

CBA

Figure 4.1. The �ve two-loop diagrams.di�erene between the oeÆients of diagrams D and C in W2, and these oeÆientsdi�er only beause the Lie-Algebra indies are ontrated in a slightly di�erent way.So if tab def= tr(GaGb), tab is the inverse matrix of tab and we use tab and tab to raise andlower Lie-algebra indies, we get2:C(D)� C(C) def= �Lie algebra on-trations for D �� �Lie algebra on-trations for C �= tbb0t0R�b0ÆRÆ0Rb�R�� � tbb0t0R�0ÆRÆb0Rb�R�� (4.1)The fat that R is a representation is just the relation �fabR�a = tbb0t0(R�b0ÆRÆ0 �R�0ÆRÆb0) and therefore (4:1) = �fabR�aRb�R�� def= �C(E):These are exatly the negatives of the Lie-algebra ontrations for diagram E. Takinginto aount the di�erent symmetry fators for these diagrams we �nally get (afterdividing by the Lie algebrai oeÆient)~W2 def= 1C(E)Ŵ2 = �14 Z E(D) + 13 Z E(E):More expliitly, if diagrams D and E are marked as in �gure 4.2, then ~W2 is givenby ~W2 = 116 Z�4ds1�4 _X i1 _Xj2 _Xk3 _X l4�ikm�jln (X1 �X3)mjX1 �X3j3 (X2 �X4)njX2 �X4j32The Lie-algebra omputation below is a partiular ase of the \STU" relation of hapter 9.30
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Figure 4.2. The two ontributing diagrams.� 148� Z�3ds1;2;3 ZR3 d3z _X i1 _Xj2 _Xk3 �i0j0k0�ii0i00�jj0j00�kk0k00(X1 � z)i00jX1 � zj3 (X2 � z)j00jX2 � zj3 (X3 � z)k00jX3 � zj3 ; (4.2)where Xi stands for X(si), i = 1; : : : ; 4.In the ase of G = SU(N) ; R = CN one an alulate3 that in W2 the Lie-algebrai oeÆients of diagrams C, D, and E are (N2�1)2N , 1�N2N , and N(N2 � 1)respetively, and therefore in this ase~W2 = 1N(N2 � 1) �W2 � 12N (W1)2� :Our aim in the rest of this hapter is to prove the following theorem:Theorem 2 Let X be a parametrized knot in R3. (that is to say, X is a smooth non-singular funtion from S1 to R3 that has no self intersetions). Then the integralsrepresented by the diagrams D and E of �gure 4.2 are onvergent, and their sum ~W2is an isotopy invariant of the knot X. This invariant an be identi�ed to be ��2=6minus 4�2 times the seond non trivial oeÆient of the Conway polynomial of X,whose redution mod 2 is the well known Arf invariant of X.4.2 The �niteness of ~W2It still isn't lear that the integrals represented by the diagrams D and E are �nite.For diagramD there appears to be a singularity when three of the integration variablesare lose together but exatly the same analysis that has shown that the self-linkingintegral is �nite shows that this integral is also �nite. In diagram E there appears to3See hapter 9 for the details. 31



be a problem when two or three of the knot integration variables are lose togetherand are lose to z | the variable of the A3 vertex integration. Up to a onstantfator, diagram E represents the integral:Z E(E) = Z�3ds1;2;3 _X i(s1) _Xj(s2) _Xk(s3)Vijk(X(s1); X(s2); X(s3)) (4.3)whereVijk(x1; x2; x3) def= �i0j0k0�ii0i00�jj0j00�kk0k00T i00j00k00(x1; x2; x3) def= 6ijki00j00k00T i00j00k00(x1; x2; x3)and T ijk(x1; x2; x3) def= ZR3 d3z (x1 � z)ijx1 � zj3 (x2 � z)jjx2 � zj3 (x3 � z)kjx3 � zj3The integral de�ning T is learly �nite for every hoie of distint x1�3 in R3, butit blows up rapidly when some of the x's oinide. To show that in spite of this theintegral (4.3) is �nite we need to understand the behavior of T as two or three of itsarguments oinide.4.2.1 A simpler expression for TLet us �rst rewrite T in a way that will make it easier to handle. Using43p� Z 10 e��2=3Nd� = 1N3=2we an rewrite T asT ijk = 6427�3=2 Z 10 d3� ZR3 dz(x1 � z)i(x2 � z)j(x3 � z)ke�P3m=1 �2=3m jxm�zj2:Introduing the notation:A = X�2=3m ; �m = �2=3mAt = X�mxm ; s = X�mjxm � tj2we getT ijk(x1; x2; x3) = 6427�3=2 Z 10 d3� ZR3 dz(x1 � z)i(x2 � z)j(x3 � z)ke�A(jz�tj2+s)= 6427�3=2 Z 10 d3�e�As ZR3 dz(x1 � t� z)i(x2 � t� z)j(x3 � t� z)ke�Ajzj2:This is just a Gaussian integral with respet to z, and it an be evaluated to giveT ijk = 6427 Z 10 d3�e�AsA3=2 � 12A �(x1 � t)iÆjk + (x2 � t)jÆki + (x3 � t)kÆij�+ (x1 � t)i(x2 � t)j(x3 � t)k� :32



Changing variables from d3� to d2�dA (there are just two integrations over the �'s be-ause they are onstrained to satisfy P�m = 1) we pik the Jaobian 278 A7=2p�1�2�3and get (after evaluating the A integral)T ijk(x1; x2; x3) = 4 Z d2�q�1�2�3 "(x1 � t)iÆjk + (x2 � t)jÆki + (x3 � t)kÆijs2+4(x1 � t)i(x2 � t)j(x3 � t)ks3 # :(4.4)4.2.2 Bounding the possible divergeneClearly the integral (4.3) is translation invariant, and invariant under reparametriza-tions of X of the form s! s+ s0. So in the investigation of its possible divergenieswe an assume that, say, 0 is the midpoint between s2 and s3, s1 is farther away froms2 or s3 than the distane between these two:s1 = � ; s2 = ��� ; s3 = �� ; j�j < 13 ;and that X(0) = 0. In this ase we an writeT ijk(X� ; X��� ; X�� ) = 4 Z d2�q�1�2�3 "Sijk1s2 + 4Sijk2s3 # (4.5)with Sijk1 def= (X� � t)iÆjk + (X��� � t)jÆki + (X�� � t)kÆij;Sijk2 def= (X� � t)i(X��� � t)j(X�� � t)k:The problemati regions are when � or � are small, and we need to be able to estimateintegrals like those in (4.5) for suh values of � and � .Lemma 4.2.1 Let A, B, and C be the three verties of a triangle with sides jA�Bj �jA�Cj � � , and jB�Cj � �� with � < 1=3 (see �gure 4.3). For positive �'s satisfying�1 + �2 + �3 = 1 de�ne:t = �1A + �2B + �3Cs = �1jA� tj2 + �2jB � tj2 + �3jC � tj2Finally let �A be one of f(1� �1); �2; �3g, �B be one of f�1; (1� �2); �3g, and �Cbe one of f�1; �2; (1� �3)g.In this situation there exists onstants 1�5 independent of � and � for whih:Z d2�q�1�2�3 � 1s2 � < 1�� 4 (4.6)33
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1Figure 4.3. The triangle ABC.Z d2�q�1�2�3 "�1s2 # < 2� 4 (4.7)
Z d2�q�1�2�3 ��A�B�Cs3 � <

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
3�3� 6 if neither of �B or �C ishosen to be �1,4�� 6 if exatly one of �B, �C ishosen to be �1,5� 6 if both of �B and �C arehosen to be �1. (4.8)

Proof We will write �2 = (1 � �1)� and �3 = (1 � �1)�� where 0 � � � 1 and�� = 1��.  will denote a positive onstant that is allowed to hange from line to line.It is easy to read from the geometry of �gure 4.3 that when �1 < 1=2, (equivalently,when t is in the left portion of �gure 4.3)sj�1< 12 >  ����2jB � Cj2 + ���2jB � Cj2 + �1� 2� > � 2 �����2 + �1� : (4.9)Also, it is lear that the major ontribution to (4.6), (4.7), and (4.8) omes from thatregion when �1 < 1=2, and therefore (4.9) an be used to give upper bounds for theintegrals we are onsidering.Taking for example (4.8) with �A = (1� �1), �B = (1� �2), and �C = (1� �3)we get Z d2�q�1�2�3 ��A�B�Cs3 � <  Z 10 d� Z 120 d�1q�1���(�1 + ���)� 6 �����2 + �1�3 : (4.10)
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The �1 integral an be expliitly evaluated. In fat, for a small � one hasZ a0 d� p�(�2 + �)3 = �pa2(a+ �2)2 + pa4�2 (a + �2) + artan(pa� )4�3 < �3and Z a0 d� p��(�2 + �)3 = pa�22(a+ �2)2 � 5pa4 (a+ �2) + 3 artan(pa� )4� < �and plugging these two estimates into (4.10) gives the required result. The otherassertions of the lemma are proved along the same lines. 24.2.3 Proof of the �niteness of diagram EIt is suÆient to show that T ijk(X� ; X��� ; X�� ) < =�: (4.11)Let us �rst deal with the ontribution oming from Sijk1 . Expanding Sijk1 in powersof �1, Sijk1 = S0;ijk1 + �1S1;ijk1 (4.12)we an use (4.6) and (4.7) and then all that is left to prove is:6ijki0j0k0 _X i0(�) _Xj0(���) _Xk0(��)Sp;ijk1 = O(�1�p� 3) ; p = 0; 1: (4.13)This an be done by expanding all the terms in the above expressions one in powersof � and one in powers of � and showing that the low order oeÆients in eah ofthese expansions are zero. It is not hard to do it by hand, but as we are going toenounter some very similar but a bit harder expansions later on we will not do ithere but postpone it to the appendix where it will be shown how all these expansionsan be arried out in a uniform way using a omputer.The terms involving Sijk2 are dealt with in a very similar way. Clearly, eah of thefators of Sijk2 is made of three summands, whose oeÆients exatly orrespond tothe various possibilities for hoosing �A, �B, and �C in the lemma 4.2.1. Keeping(X� � t)i unexpanded and expanding only the last two fators of Sijk2 in powers of �1,Sijk2 = S0;ijk2 + �1S1;ijk2 + �21S2;ijk2 ; (4.14)and keeping in mind (4.8) what is left to prove is
6ijki0j0k0 _X i0(�) _Xj0(���) _Xk0(��)Sp;ijk2 =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
O(�3� 5) for p = 0;O(�� 5) for p = 1;O(� 5) for p = 2: (4.15)
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Again, the relevant expansions will be shown to vanish to the required order in theappendix using a omputer.4.3 The invariane of ~W24.3.1 The regularized ~W2We will now show that ~W2 is indeed a knot invariant | that it is not hangedunder in�nitesimal deformations. The proof presented here should be similar in spiritto invariane proofs (that are yet to be found) of higher terms in the perturbativeexpansion | we will �rst write a diagrammati argument, and then supplement itwith the required analytial details. As in the ase of the analysis of the variationof the self linking number in the previous hapter, in analyzing the variation of ~W2we will need take derivatives of Vijk and of Vij near the diagonal where there aresingularities whih will prevent a straight-forward invariane proof. To avoid thesesingular points de�ne ~W2;� to be given by the same integrals R E(D) and R E(E) as~W2, only with the integration domain restrited by the ondition that the s's wouldbe at least � apart | for i 6= j we requirejsi � sjj > �: (4.16)We will denote these integrals by D� and E�, and the �niteness of ~W2 that was provenabove just means~W2;� = �14D� + 13E�����!�! 0 � 14 Z E(D) + 13 Z E(E) = ~W2: (4.17)4.3.2 The variation of ~W2We will now vary D� and E� under an in�nitesimal deformation of X given by X !X+!. It will be a lot more instrutive to perform those alulations diagrammatiallyinstead of working with the expliit formulae given for D and E in (4.2). First, letus vary D�. When X moves to X + ! it swaps an in�nitesimal surfae S, and ourquantity of interest ÆD� is given by the evaluation of dLV on S whih after usingthe key relation (3.2) redues to diagrams D3 and D4 and by two boundary terms,diagrams D1 and D2:
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In these diagrams a dashed line represents as before the gauge propagator Vijevaluated between the two vetors marked at its ends, a dotted represents the (2; 0)-form F , a d symbol stands for exterior di�erentiation applied to the nearby end ofthe nearby propagator, and an � between two interation points on the knot meansthat these points are exatly � apart.Similarly we an vary E�:
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The diagram E3 appears beause (3.2) is true only o� diagonal. Atually dLVand �dRF di�er by a ?L of a Æ-funtion as was shown in the derivation of (3.2).Integrating by parts and using Leibnitz's rule we get:
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-4.3.3 The invariane proofTo show that ~W2 is indeed an invariant we �rst need to show that the limit as �! 0of Æ(�14D� + 13E�) vanishes. That is, we need to show thatlim�!0 �D1 +D2�D3 +D4 + E1� E2 + E3� E4 + E5� E6 + E7 + E8� E9 = 0:38



In fat, we will show that lim�!0 �D1 +D2 + E3 = 0; (4.18)lim�!0 �D3 +D4� E4 + E5 = 0; (4.19)and lim�!0 E1� E2� E6 + E7 + E8� E9 = 0; (4.20)independently. For onveniene, the symbol R� will denote integration in whih theintegration variables are onstrained to satisfy the restritions (4.16), we will writeX� for X(s�), and similarly for _X�, �X� and !�.Proof of (4.18) Diagram D1 represents the integral�D1 = � Z� ds1�3!i3 _Xk4Vij(X3; X1) _Xj1Vkl(X4; X2) _X l2 ; s4 = s3 + �; (4.21)diagram D2 readsD2 = Z� ds1�3 _X i3!k4Vij(X3; X1) _Xj1Vkl(X4; X2) _X l2 ; s4 = s3 + �; (4.22)and diagram E3 is given byE3 = � Z� ds1�3 _Xp3!n3 �pnm�mikVij(X3; X1) _Xj1Vkl(X3; X2) _X l2: (4.23)Using �pnm�mik = ÆipÆkn � ÆkpÆinwe an write E3 = E30 + E300 withE30 = � Z� ds1�3 _X i3!k3Vij(X3; X1) _Xj1Vkl(X3; X2) _X l2: (4.24)and E300 = Z� ds1�3 _Xk3!i3Vij(X3; X1) _Xj1Vkl(X3; X2) _X l2:: (4.25)The nearness of s3 and s4 learly implies that the integrand in (4.21) onverges to theintegrand of (4.25) and the integrand in (4.22) onverges to the integrand of (4.24) as�! 0. At the region where s1 and s2 are farther from s3;4 than some �xed but smallpositive onstant T , there is no problem with ommuting integration with taking the� ! 0 limit. Conentrating �rst on omparing diagrams D1 and E300 we see thatnothing partiularly harmful happens if just js4 � s2j is small | as it was shown inhapter 3 the integrand in this ase remains �nite. Otherwise, we are looking at oneof the following exeptional ases (assuming for simpliity that s4 = 0, s3 = ��, andX4 = 0):Case 1: Disregarding the propagator onneting X2 and X4 = 0 the di�erene�D1 + E300 reads:Z T� ds1det �!(��) ��� _X1���X(��)�X1�jX(��)�X1j3 � Z T� ds1det �!(0) ��� _X1���X(0)�X1�jX(0)�X1j3 : (4.26)39
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Figure 4.4. The two exeptional ases for D1$ E300.Expanding the integrands in (4.26) in powers of s1 we an ignore all terms of ordersmaller than 1=s1 | evaluating the integrals in (4.26) for these terms would give aresult bounded by a onstant multiple of T in the �! 0 limit, and as T was hosensmall we an indeed ignore the ontribution to (4.26) oming from these terms. Thereare no terms of order higher than 1=s1 in (4.26) and the term of order 1=s1 reads:Z T� ds10� 12(s1 + �) det �!(��) ��� _X(��)��� �X(��)�j _X(��)j3 � 12s1 det �!(0) ��� _X(0)��� �X(0)�j _X(0)j3 1Aat the �! 0 limit we get� det �!(0) ��� _X(0)��� �X(0)�2j _X(0)j3 Z T� ds1 � 1s1 + � � 1s1�! �det �!(0) ��� _X(0)��� �X(0)� log 22j _X(0)j3 :(4.27)Reinstalling the propagator onneting X2 and X4 and the integration over s2 we getthe only non-vanishing ontribution to �D1 + E300.Case 2: Here the �! 0 limit is in fat zero. To see that, one does analysis similar tothe previous ase, and noties that s2 is integrated over an interval of length smallerthan s1 and thus remembering that the propagator onneting X2 and X4 is �niteeven near the diagonal the s2 integral is � s1, and this additional fator is suÆientto make the ontribution oming from this ase vanish.A similar analysis to the above shows that the only non-vanishing ontributionto D2 � E30 omes from the ase parallel to ase 1 here, and that, in fat, theseontributions exatly anel. 40



2Proof of (4.19) Here are the integrals orresponding to the relevant diagrams:�D3 = � Z� ds1�3 _Xk4Vlk(X2; X4) _X l2 _X i1!j1Fij;�(X1; X3); ; s4 = s3 + �;(4.28)D4 = Z� ds1�3 _Xk3Vkl(X3; X1) _X l1 _X i2!j2Fij;�(X2; X4); ; s4 = s3 + �; (4.29)�E4 = 12 Z� ds1�3 _Xk3 �kmn�mnpVpl(X3; X1) _X l1Fij;�(X2; X3) _X i2!j2; (4.30)E5 = �12 Z� ds1�3 _Xk3 �kmn�mnpVpl(X3; X2) _X l2Fij;�(X1; X3) _X i1!j1: (4.31)Using �kmn�mnp = 2Æ pkand the nearness of s3 and s4 it is lear that so long as X1 and X2 are far away fromX3 the integrands of (4.28) and of (4.29) onverge to the integrands of (4.31) and of(4.30) respetively, and that there is no problem with ommuting integration withtaking the �! 0 limit. The ases when X1 and X2 are not far away from X3 an betreated in the same way as in the previous proof. 2Proof of (4.20) It will be onvenient here to replae � by 2� and then take the �! 0limit. In all of the relevant diagrams two of the s's are onstrained to be exatly 2�apart and the third to be farther then 2� from any of the previous two. It is harmlessto assume that s2 = ��, s3 = �, X(0) = 0, and s1 = � with j� j > 3�. We will denotethe ratio �=� by �.With these notations one an see that the integrands orresponding to our dia-grams an be written in pairs as follows: (ignoring the overall oeÆient �1=16�)E1� E2 = X�=� 6ijki0j0k0 _X i0� !j0���� _Xk0���T ijk(X� ; X���� ; X��� )�E6� E9 = X�=� �mni�ljk _Xm� !n� _X l���T ijk(X� ; X���� ; X��� )E7 + E8 = X�=� �mnj�lki _Xm����!n���� _X l�T ijk(X� ; X���� ; X��� ):Remembering (4.5), (4.12), (4.14), and lemma 5.1 we see that in onsidering the�! 0 limit we just need to show thatlim�!0 Zj� j>T d��a� b X�=� �6ijki0j0k0 _X i0� !j0���� _Xk0���+�mni�ljk _Xm� !n� _X l���+�mnj�lki _Xm����!n���� _X l��Sp;ijkq = 0:(4.32)and that lim�!0 Z3�<j� j<T (same)�a� b d� = O(T ) (4.33)41



where T is some �xed small positive number and a and b are the exponents of � and� as in equations (4.6), (4.7), and (4.8).As in (4.32) � is bounded from below we an use � = �� to replae the limit thereby an � ! 0 limit and then all that is required is to show that the summand there is� �a+1. The relevant algebra will be arried out in the appendix using a omputer.The integration domain in (4.33) is symmetri and therefore we an replae theintegration there with an integration over 3� < � < T , replaing the integrand withX� = �� = � �6ijki0j0k0 _X i0��!j0���� _Xk0��� + �mni�ljk _Xm��!n�� _X l��� (4.34)+ �mnj�lki _Xm����!n���� _X l��� Sijk1;2 ����!�� :Simply integrating over � now shows that to onlude the invariane proof we justneed to show that (4:34) = O(�a� b). Again, the relevant algebra will be arried outin the appendix using a omputer. 2Conlusion of the invariane proof What we've shown so far is thatlim�!0 Æ ~W2;� = 0 (4.35)but what we need is Æ �lim�!0 ~W2;�� = 0:Namely, we need to know that we an \ommute" the � ! 0 limit with taking thevariation Æ=Æ!. This follows from the following fat:Fat If X(t) :! R3; t 2 [�1; 1℄ is a smooth family of parametrized knots, then theonvergenes in (4.17) and in (4.35) are uniform in t.To prove this fat simply observe that all the estimates in setion 4.2 and in thissetion were, in fat, uniform for families of parametrized knots having a uniformupper bound on their �rst, seond and third derivatives, a uniform lower boundon their �rst derivative, and a uniform lower bound on their distane from \self-interseting". 24.4 Identifying ~W2The last assertion of theorem 2 is that the invariant ~W2 that we have produedis essentially the seond non-zero oeÆient in the Conway polynomial of X. TheConway polynomial is de�ned by its behavior under ipping a rossing in a planarprojetion, so we will try to understand how ~W2 hanges under suh a ip.Very briey, it is lear that the di�erene in the value of ~W2 before and after aip omes from a singularity in either of Vijk or Vij at the point where the ip ours.Using the invariane that we have just proven one an `straighten' the knot near a42
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Figure 4.5. The hange in ~W2 under a ip.rossing point before ipping, and then it is easy to hek in this ase Vijk ontratedwith the tangents of the knot in fat vanishes near the rossing point exept if one ofits arguments is on the upper branh of the rossing and the other is on the lower.Vijk is then inversely proportional to the distane between its two arguments, andthe fat that 1=r is integrable on R2 shows that this singularity an be negleted.Similarly onsidering diagram D one �nds that the only singularity that remains isthe one that ours when the two arguments of the same propagator are arranged aspropagator 1 in �gure 4.5, and the other propagator an then be assumed to be awayfrom the rossing. Repeating (3.4) for propagator 1 and then integrating over theloation of the other propagator, marked 2 in the �gure, it is lear that e�etively weare alulating the linking number of the two knots that are reated if the originalknot is ut at the rossing as in the �gure. It is easy to hek from the de�nitions (see[31℄) that this is exatly the same relation as the one that is satis�ed by the seondnon-zero oeÆient in the Conway polynomial of X, and so they oinide up to aonstant shift. This onstant shift is given by ~W2(unknotted irle). By invarianewe an just alulate ~W2(the unit irle in the XY plane) and an expliit alulationshows (see [25℄) that~W2(the unit irle in the XY plane) = ��26 :This onludes the proof of theorem 2.4.5 Appendix: Some algebraWe inlude here the short omputer routine that veri�es few assertions that weremade in setions 4 and 4.3. First, the routine itself. It is written in MathematiaTM| a symboli mathematis language. For more information about this language see[48℄.X[mu_℄ := {X1[mu℄,X2[mu℄,X3[mu℄} ; Xd[mu_℄ := D[X[nu℄,nu℄ /. nu -> mu43



X1[0℄=X2[0℄=X3[0℄=0 ; w[mu_℄ := {w1[mu℄, w2[mu℄, w3[mu℄}ser[expr_℄ := Series[#,{var,0,ord}℄& /� exprXdtau = ser[Xd[a tau℄℄ ; wtau = ser[w[a tau℄℄Xdeps = ser[Xd[b eta tau℄℄ ; weps = ser[w[b eta tau℄℄Xdnegeps = ser[Xd[-b eta tau℄℄ ; wnegeps = ser[w[-b eta tau℄℄t = lambda1 X[a tau℄ + lambda2 X[-b eta tau℄ + lambda3 X[b eta tau℄z1 = X[a tau℄ - t ; z2 = X[-b eta tau℄ - t ; z3 = X[b eta tau℄ - tdelta = IdentityMatrix[3℄S=Table[ser[Whih[var==eta,{(z1[[i℄℄delta[[j,k℄℄+z2[[j℄℄delta[[k,i℄℄+z3[[k℄℄delta[[i,j℄℄)/. lambda1 -> 2 eta ,z1[[i℄℄ (Expand[z2[[j℄℄z3[[k℄℄℄/. {lambda1^2 -> 5 eta^3 , lambda1 -> 4 eta^2})/eta^2},var==tau,{(z1[[i℄℄delta[[j,k℄℄+z2[[j℄℄delta[[k,i℄℄+z3[[k℄℄delta[[i,j℄℄)/tau, z1[[i℄℄z2[[j℄℄z3[[k℄℄/tau^3}℄℄,{i,3},{j,3},{k,3}℄sign = (Signature /� (perm = Permutations[{1,2,3}℄))eps[f_℄:=Sum[sign[[p℄℄sign[[q℄℄(f��Join[perm[[p℄℄,perm[[q℄℄℄),{p,6},{q,6}℄six[f_℄:=eps[f[#3,#1,#4,#6,#2,#5℄&℄ + eps[f[#6,#1,#4,#2,#3,#5℄&℄e[type_℄ :=six[S[[#1,#2,#3,type℄℄Xdtau[[#4℄℄Xdnegeps[[#5℄℄Xdeps[[#6℄℄&℄ /. b->1e12[type_℄:=six[S[[#1,#2,#3,type℄℄Xdtau[[#4℄℄wnegeps[[#5℄℄Xdeps[[#6℄℄&℄e69[type_℄:=eps[S[[#3,#5,#6,type℄℄wtau[[#1℄℄Xdtau[[#2℄℄Xdeps[[#4℄℄&℄e78[type_℄:=eps[S[[#6,#3,#5,type℄℄Xdnegeps[[#1℄℄wnegeps[[#2℄℄Xdtau[[#4℄℄&℄de[type_℄ :=Sum[e12[type℄ + e69[type℄ + e78[type℄ , {b,-1,1,2}℄The �rst paragraph of the routine de�nes X, _X, !, and their expansions withrespet to the externally de�ned variable var to order ord at the points �� , �� =���� , and � = ��� .The seond paragraph de�nes S[[i,j,k,1 or 2℄℄ to be Sijk1 or 2 expanded with re-spet to the relevant variable. S is de�ned di�erently for var=eta then for var=tau| if var=eta then (4.6) and (4.7) mean that in S1 one an make the replaementlambda1 -> 2 eta while (4.8) means that in S2 the replaement {lambda1^2 ->5 eta^3 , lambda1 -> 4 eta^2} an be made. It is easy to see that after the latterreplaement has been made the expansion for S2 will begin at �2, and this justi�esdividing it by �2 and expanding everything to an order two less than is mentioned insetions 4 and 4.3. If var=tau the expansions for z1, z2, and z3 begin at � , and thusthe de�nitions S[[i,j,k,1℄℄= Sijk1 =� and S[[i,j,k,2℄℄= Sijk2 =� 3. This allows us toexpand S[[i,j,k,1℄℄ (S[[i,j,k,2℄℄) to an order lower by one (three) than the orderrequired for Sijk1 (Sijk2 ).The third paragraph ontains the routines that do the ���� and the 6������ ontrations,and the last paragraph de�nes the relevant diagrams.We now inlude a MathematiaTM session produed using the above routine, for44



whih I have hosen the not very imaginative name \�le".Mathematia (sun4) 1.2 (November 6, 1989) [With pre-loaded data℄by S. Wolfram, D. Grayson, R. Maeder, H. Cejtin,S. Omohundro, D. Ballman and J. Keiperwith I. Rivin and D. WithoffCopyright 1988,1989 Wolfram Researh In.In[1℄:= var=eta; ord=1; << fileIn[2℄:= {e[1℄ , e[2℄} /. {a->1 , eta->0}Out[2℄= {0, 0}In[3℄:= {de[1℄ , de[2℄} /. a->12 2Out[3℄= {O[eta℄ , O[eta℄ }In[4℄:= var=tau; ord=1; << fileIn[5℄:= {Sum[e[1℄,{a,-1,1,2}℄ , Sum[e[2℄,{a,-1,1,2}℄}2 2Out[5℄= {O[tau℄ , O[tau℄ }In[6℄:= var=tau; ord=2; << fileIn[7℄:= {Sum[de[1℄,{a,-1,1,2}℄ , Sum[de[2℄,{a,-1,1,2}℄}3 3Out[7℄= {O[tau℄ , O[tau℄ }Out[2℄ and Out[5℄ prove equations (4.13) and (4.15), while Out[3℄ and Out[5℄prove the assertions at the end of the invariane proof in setion 4.3. This onludesthe proof of the main theorem of this paper.Remark Obtaining these eight expansions takes few hours of CPU time on a 1989workstation.
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Chapter 5The stationary phaseapproximationThe purpose of this hapter1 is to ompute and examine the onsequenes of thestationary phase approximation of setion 1.2.2. In [42℄ Witten has alulated thestationary phase approximation for the Chern-Simons path integral, �nding that thee�etive oupling onstant is shifted by half the Casimir number2 2(G) of the adjointrepresentation of the underlying group relative to the bare oupling onstant k. Hisalulation was restrited to ompat simple gauge groups, and one of the purposesof this hapter is to examine the (somewhat di�erent) ase of non-ompat simplegroups. The results of this hapter were obtained jointly with E. Witten, and are allinluded (in a somewhat di�erent format) in [7℄.5.1 IntrodutionReall from setion 1.3.3 that the quadrati part of the gauge �xed Chern-SimonsLagrangian is given byk s(A0) + k4� ZM3 tr �A ^DA0A+ 2�DA0i Ai + 2�DA0i DA0;i� (5.1)where DA0 denotes ovariant di�erentiation with respet to a bakground at on-netion A0. If the gauge group G is simple and ompat, then the inner produth'1; '2i = � ZM3 pgtr('1'2) (5.2)1Atually, in the logial order of things, this hapter deserves to appear before hapters 3 and 4.However, due to its less omplete and less rigorous nature I've deided to plae it after those tworigorous setions.2The Casimir number 2(R) of a representation R of a simple Lie algebra G relative to somepre-hosen invariant bilinear form tr on G is the ratio trR=tr. Namely, 2(R) is the onstant for whihtrRR(Ga)R(Gb) = 2(R)trGaGb for every Ga;b 2 G.46



is positive de�nite3, and we an rewrite (5.1) ask s(A0)� k4� * A� ! ; LA0�  A� !++ k2� D�;�A0Ewhere �A0 is the ovariant Laplaian and LA0� is de�ned as in setion 3.1:LA0� = (DA0 ?+ ? DA0)J ; JA = AJ� = �� :repeating the same4 analysis as in setion 1.2.2, we thus �nd that to lowest order in1=k, W(M3; k) � Xat A0 det�A0r���detLA0� ���e�i�4 signLA0� eik s(A0):(Here we have ignored an A0-independent in�nite power of 4�k).The problem with the above formula is that as it stands, det�A0 , detLA0� , andsignLA0� are all meaningless due to the in�nite dimensionality of the spaes involved.A way around this was found by Ray and Singer [37℄ | they show when L is a suitableoperator, the sum �(L; s) = Xeigenvalues � of L��sonverges for Re(s) large enough, that the resulting �-funtion has a meromorphiontinuation on the entire s plane, and that it is analyti at s = 0. Finally, theyde�ne detL = e��0(L) def= e��0(L;0):Clearly, this de�nition agrees with the usual de�nition of the determinant in the �nitedimensional ase.Similarly, one an de�ne (following Atiyah, Patodi, and Singer [5℄)�(L; s) = Xeigenvalues � of L��ssign�for Re(s) large enough, analytially ontinue to s = 0, and setsignL = �(L) def= �(L; 0):With these de�nitions, we an setWregularized0 = Xat A0 exp�14� 0 ��LA0� �2�� � 0 ��A0�� exp�i�4 � �LA0� � exp ik s(A0):(5.3)3Here we have restrited our hoie of tr a bit further. Not only do we require that it will beinvariant, namely a multiple of the Killing form, but we also insist that it will be a positive multipleof the negative de�nite Killing form.4But remembering that for Fermioni Gaussian integrals R d�d e�J / det(J) as in (1.13).47



In the proess of de�ning Wregularized0 we were fored to introdue a metri on M3,and it is now not lear that our de�nition is independent of the hoie of that metri.Part of the answer was already given by Ray and Singer in [37℄ | they proved thatthe ratio of determinants exp�14� 0 ��LA0� �2�� � 0 ��A0��is, in fat, metri independent5.The signature �(LA0� ) turns out to be trikier. We will see in the next setionthat for an arbitrary onnetion A (not neessarily at), the variation of �(LA�) withrespet to A is given by Æ� �LA�� = �2(G)�2 ZM3 tr ÆA ^ FA0: (5.4)This implies6 � �LA0� �� � �L0�� = �22(G)� s(A0);where L0� is the standard L� operator (d ? + ? d)J twisted by the zero onnetion.Therefore, the \seond half" of (5.3) an be rewritten asexp i�4 � �LA0� � exp ik s(A0) = exp�i� dimG4 �(L�) exp i(k + 2(G)=2)s(A0): (5.5)The shift k ! k + 2(G)=2 in the above formula is exatly the famous \shift in k" ofChern-Simons theories.We still have to analyze themetri dependane ofWregularized0 | namely, the metridependane of �(L�). Here we an appeal again to the Atiyah-Patodi-Singer theorem,whih, in this ase, says thatÆ�(L�)Æg = 112�2 ZM3 trÆ!gÆg ^ Rg = Æs(!g)6�Æg ; (5.6)where Rg is the urvature of the Levi-Civita onnetion !g of g. The situation now issimilar to that of setion 3.4 | Wregularized0 is not invariant, but it an be `orreted'to give an invariant Wrenormalized0 def= Wregularized0 eidimG24 s(!g)at the ost of having to frame M3 | to hoose a homotopy lass of trivializations ofthe tangent bundle of M3 | so that s(!g) an be de�ned unambiguously.5They have also onjetured that that ratio is equal to the square root of the Reidemeister-Franztorsion of M3 with oeÆients in the representation of �1(M3) determined by A0. This onjeturewas later proven by Cheeger [15℄ and M�uller [32℄ independently.6This result an be dedued diretly from the Atiyah-Patodi-Singer theorem [5℄.48



5.2 The variation of � in the ompat aseAs a warm-up for the more hallenging ase of a non-ompat group, in this setionwe will prove formula (5.4). For simpliity we will perform all our omputations ona at R3. A more omplete treatment an be found in [7℄.The �rst step is to rewrite LA�:LA� = �i  ��xi + Ai! :Here �1, �2, �3 are the matries representing multipliation by the quaternions i, j, krespetively on the four dimensional real vetor spae V underlying the quaternionsH:�1 = 0BBB� 0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCCA ; �2 = 0BBB� 0 0 �1 00 0 0 11 0 0 00 �1 0 0 1CCCA ; �3 = 0BBB� 0 0 0 �10 0 �1 00 1 0 01 0 0 0 1CCCA :This di�erential operator ats on V 
G-valued funtions on R3. The f�ig's satisfythe following ommutation relations:f�i; �jg = �2Æij (5.7)[�i; �j℄ = 2�ijk�k: (5.8)We will attempt to alulate �(LA�) using a result derived in [1℄ and in [11℄, andreviewed in [7℄:Theorem 3 The variation of the �-invariant �(D) of a di�erential operator D atingon a three dimensional spae is given byÆ[�(D)℄ = �2C�1=2p�where the form C�1=2 is related to the asymptoti expansion of the heat kernel of D2by7 Tr(ÆD exp�tD2) = C�3=2t3=2 + C�1t + C�1=2t1=2 + � � �If D2 = �(� + F ) and the operator F an be onsidered as `small' relative to �,one an determine the oeÆients C�m=2 usingDx ���et(�+F )��� yE � Dx ���et���� yE+ Z t0 ds Dx ���es�Fe(t�s)���� yE+ � � �7The T of Tr in the formula below is apitalized to emphasize the in�nite dimensionality of thespae involved. 49



To apply theorem 3, we �rst need to alulate (LA�)2:(LA�)2 = �i�j(�i + Ai)(�j + Aj) = �i�j�i�j + �i�j�i Æ Aj + �i�jAi�j + �i�jAiAjusing Leibnitz' rule= �i�j�i�j + �i�j(�iAj) + (�i�j + �j�i)Ai�j + �i�jAiAjAnd replaing eah �i�j by 12 (f�i; �jg+ [�i; �j℄) = �Æij + �ijk�k we get= ��� (�iAi) + �ijk�k(�iAj)� 2Ai�i � AiAi + �ijk�kAiAj:Now, aording to theorem 3 the variation of �(LA�) under LA� ! LA+ÆA� , that isto say, under �l  ��xl + Al!! �l  ��xl + Al + ÆAl!is given by �C�1=2p� where C�1=2 is given by:C�1=2t1=2 = Z tr �lÆAl Z t0 ds Dx ���es�Fe(t�s)���� xE ;and where F is given by:F = (�iAi)� �ijk�k(�iAj) + 2Ai�i + AiAi � �ijk�kAiAj:There is now no need to alulate | it is lear that astr �l = 0 ; tr �l�k = �4Ælkwe will haveC�1=2t1=2 = Z 4tr ÆAl (�ijl(�iAj) + �ijlAiAj) Z t0 ds Dx ���es�e(t�s)����xE(The expressions �iAj and AiAj an be assumed to be independent of x | it easy isto see that their possible dependene would have anyway lead to lower order ontri-butions). Using now the onvolution property of the heat kernel we �nd thatC�1=2 = 12�p� Z tr �ijlÆAl (�iAj + AiAj) = 2(G)2�p� Z tr�ijlÆAl (�iAj + AiAj)proving formula (5.4).Remark. It is lear from the above alulations that when we alulated (LA�)2 weould have ignored every term that has no � matrix in it | beause those terms whenmultiplied by �lÆAl end up having exatly one � in them, and thus end up havingzero trae. In fat, one of those terms, Ai�i, gives a vanishing ontribution to the endresult for another reason as well. Let us try to alulate the ontribution due to it:Z tr �lÆAl Z t0 ds Dx ���es�Ai�ie(t�s)���� xE50



Again the dependene of A in x an be ignored as it leads only to lower order ontri-butions, and we see that we �rst have to evaluateAi Dx ���es��ie(t�s)���� xE :We an now use the fat that the integral kernel for the solution of the heat equationis a symmetri funtion of x and y to replae the above expression with:Ai ��yi Dx ���es�e(t�s)���� yE�����y=x :Using the semigroup property of the heat kernel we getAi ��yi Dx ���et���� yE�����y=x = Ai(4�t)3=2 ��yi �x ����e� (x�y)24t ���� y������y=x = 0:Clearly, a similar alulation will show that even if F had any other terms whihare �rst order di�erential operators those would have added no further ontributionsto Æ�(LA�).5.3 The variation of � in the non-ompat aseIf the gauge group G is simple but not ompat, then the inner produt (5.2) is notpositive de�nite, and the analysis of (1.5) breaks down. The reason for that is that insetion 1.2.2 the phase of the integral was determined by the signature of the quadratiform approximating the Lagrangian near a stationary point. This signature is equalto the signature of a linear operator representing this form using a positive de�niteinner produt, but if the quadrati approximation is written using an operator andan inde�nite inner produt, then its signature is e�eted both by the inde�nitenessof the operator and that of the inner produt. However, this an be easily resolved| all that one has to do is to pik a positive de�nite inner produt and to reexpressthe quadrati part of the Lagrangian in terms of the new inner produt.Pik a maximal ompat subgroup G of G, and a positive de�nite inner produton G invariant under the Adjoint ation of G, suh that if G is written as the diretsum of the Lie algebra G of G and its orthogonal omplement Gn, then the originalbilinear form that we started with, tr, is given by the matrixn def=  I 00 �Inn ! :(I and Inn are, of ourse, the identity matries of End[G℄ and End[Gn℄, respetively).Also, it is more onvenient to replae the original gauge ondition k2�DiAi = 0 byk2�nDiAi = 0. With these hoies made, the operator to onsider is not the same LA0� ,51



but a slight variation of it ~LA0 , whih will presently be desribed. Let ~�i 2 End[G 
 V ℄be given by: ~�i def=  I 
 �i 00 Inn 
 ��i ! : (5.9)Where ��i 2 End[V ℄ are given by multipliation by the opposite orientation quater-nions:��1 = 0BBB� 0 �1 0 01 0 0 00 0 0 10 0 �1 0 1CCCA ; ��2 = 0BBB� 0 0 �1 00 0 0 �11 0 0 00 1 0 0 1CCCA ; ��3 = 0BBB� 0 0 0 �10 0 1 00 �1 0 01 0 0 0 1CCCA :It is useful to note that the ~�'s satisfy the following ommutation relations:f~�i; ~�jg = �2Æij (5.10)[~�i; ~�j℄ = 2n�ijk~�k (5.11)After all those preliminaries, we an �nally write ~LA0 :~LA0 def= ~�i  ��xi + Ai! :Similarly to the ompat ase, we start our alulation by alulating (~LA)2. Re-membering the remark at the end of the previous setion, we �nd that[(~LA)2℄relevant = ~�i~�j�i�j + ~�i~�j(�iAj) + ~�i~�jA~�ji Aj(here the supersript ~�j denotes onjugation by ~�j | A~�ji def= ~��1j Ai~�j). Using ~�i~�j =12 (f~�i; ~�jg+ [~�i; ~�j℄) and equation (5.10),(5.11), we see that up to irrelevant piees,the last expression equals��+ n�ijk~�k(�iAj) + n�ijk~�kA~�ji Aj:Just as in the ompat ase treated in the previous setion we �nd now that thevariation of �(~LA) under ~LA ! ~LA+ÆA, that is to say, under~�l  ��xl + Al!! ~�l  ��xl + Al + ÆAl!is given by �C�1=2p� where C�1=2 is given by:C�1=2t1=2 = Z tr ~�lÆAl Z t0 ds Dx ���es�Fe(t�s)����xEand where F is given by: F = �n�ijk~�k �(�iAj) + A~�ji Aj� :52



Therefore, we �nd thatp�Æ�(~LA) = Z tr �ijlÆA~�ll n ��iAj + A~�ji Aj� : (5.12)We will now hek that the last result, eq. (5.12) an be easily interpreted tobe to the variation of the Chern-Simons number of the projetion onto the subspaeof ompat generators of the onnetion A, with a oeÆient proportional to thedi�erene of the Casimir numbers of the representations of G on G and on Gn.We �rst wish to understand matries of the form A~�ji . DeomposingAi =  Ai AniAni Anni !aording to the deomposition G = G � Gn, it is easy to hek that the answer is:A~�ji =  Ai �jAni�jAni Anni !where �j def= ���j�j = ��j��j. Notie that the matries �j are always diagonal withtwo 1's and two �1's on the diagonal:�1 = 0BBB� 1 0 0 00 1 0 00 0 �1 00 0 0 �1 1CCCA ; �2 = 0BBB� 1 0 0 00 �1 0 00 0 1 00 0 0 �1 1CCCA ; �3 = 0BBB� 1 0 0 00 �1 0 00 0 �1 00 0 0 1 1CCCA :We now ome to understanding �p�Æ�(~LA)=2, that is, to understandingC�1=2 = 1(4�)3=2 Z tr �ijl(Æ1 + Æ2) def= 1(4�)3=2 Z tr �ijlÆA~�ll n ��iAj + A~�ji Aj� :Writting ÆA~�ll =  ÆAl �lÆAnl�lÆAnl ÆAnnl !we see thatÆ1 =  ÆAl �iAj � �lÆAnl �iAnj �� �lÆAnl �iAnj � ÆAnnl �iAnnj ! :But the traes of the matries �l vanishes, and sotr �ijlÆ1 = 4tr �ijl �ÆAl �iAj � ÆAnnl �iAnnj � : (5.13)Similarly, we perform matrix multipliation and �nd that (for the same reason asbefore we an ignore terms in whih a matrix �l or j appears. In fat, we an evenignore terms in whih a produt �l�j appears - this is beause the anti-symmetrization53



�ijl onstrains l and j to be di�erent, and it is trivial to verify that for di�erent l andj one has tr �l�j = 0.)tr �ijlÆ2 = tr �ijl  ÆAl Ai Aj �� �ÆAnnl Anni Annj !and so tr �ijlÆ2 = 4tr �ijl �ÆAl Ai Aj � ÆAnnl Anni Annj � (5.14)Equations (5.13) and (5.14) together show that C�1=2 is in fat the variation ofthe Chern-Simons number of the projetion a of the onnetion A onto the subspaeof ompat generators, with a oeÆient proportional to the di�erene of the Casimirnumbers of the representations of G on G and on Gn:Æ�(~LA)ÆA = � 1�2 Z �ijl �trGÆAl (�iAj + Ai Aj )� trGnÆAnnl (�iAnnj + Anni Annj )�= �2(G)� 2(Gn)�2 Z tr �ijlÆal(�iaj + aiaj) = �22(G)� 2(Gn)�2 Æs(a)Æa : (5.15)If one ignores the di�erene between A and a, the above result means that in the aseof a non-ompat gauge group the e�etive value of k is shifted by (2(G)�2(Gn))=2similarly to the shift k ! k + 2(G)=2 observed in the ompat ase in (5.5).The di�erene between A and a is a bit disturbing, however. The projetionP : A ! a depends on a hoie of a non-ad-invariant positive de�nite metri on Gand is not gauge ovariant, making the result (5.15) not gauge invariant. This is asimilar situation to the one enountered in (5.6) where the metri independee wasbroken by the regularization and the diÆulty an be solved in a similar way | byadding to the original Lagrangian a loal ounter-term �L that depends only on A,g and the pointwise hoie of the projetion P . The required ounter-term is�L = 2(G)� 2(Gn)32�2(G) Z trG[DAT; T ℄ ^ FAwhere DA is the ovariant exterior derivetive twisted by A, FA is the urvature of A,and T = P � P?. Indeed one has2(G)� 2(Gn)2 s(a) + �L = 2(G)� 2(Gn)2 s(A)orreting the non-gauge-invariane of (5.15).
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Chapter 6Some non-perturbative resultsIn [42℄ Witten has shown that the omputation of (1.2) an be redued to a problemin onformal �eld theory whih an be solved giving a non-perturbative de�nition forthe in�nite dimensional integral (1.2). Before going into our perturbative analysis,let as �rst review his non-perturbative results.Witten's de�nition is quite suessful in that he an show how to use it to evaluate(1.2) preisely for every three manifold M3 and link X in it, and not just alulateits leading large k asymptotis for R3, but it is less elementary and very partiular tothe Chern-Simons theory. There doesn't seem to be any diret relation between hisway of alulating and the perturbative alulation shown here, and it is interestingto ompare the two view points. Let us start by reviewing his results for a link inR3, as presented in [43℄. As is shown there, W(R3;X ; k) onsidered as a funtion ofk and the gauge group G = SU(N) is in fat up to a simple hange of variable theHOMFLY [23℄ polynomial of the link X , whih itself is a generalization of the Jonespolynomial of X .Witten shows that to de�ne W(R3;X ; k) unambiguously one needs to onsiderframed links instead of just links. That is to say, eah omponent X of the linkhas to be aompanied with a presribed `framing' | a hoie up to homotopy of anowhere vanishing setion F of the normal bundle of X, or, more geometrially, ahoie of a `shadow' for eah omponent as in the �gure 6.1.Aording to Witten, if the framing of link hanges by a single twist, W getmultiplied by e2�ih, where h is a real number determined by k and the representationR orresponding to the omponent of the link on whih the twist was made. This isshown shematially in �gure 6.2.In the ase where the underlying group G is SU(N) for some positive integer N ,and all the representations R are just the de�ning representation of SU(N) in CN ,h is given by: h = N2 � 12N(N + k) (6.1)The di�erene between any two framings of a single knot is measured using asingle integer | the number of signed twists required to hange one framing to the55
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Figure 6.1. A knot with two of its possible framings. (The arrows indiate thedi�erenes between the two framings)
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Figure 6.2. The hange in W under a single twist.
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other, and the above relation shows that for a link with several omponents we an infat onsider two framings to be equivalent if the total number of twists required toswith from one framing to the other is zero, ounting all twists on all the omponentsof the given link. With this identi�ation for eah link X = fXg in R3 there is aunique preferred framing | the framing fFg for whih the total linking number ofX is 0: $(X ) def= X1;2 $(X1 ; F2) = 0In this framing, Witten has shown thatW(R3;X ; k) has the following three propertieswhih allows one to alulate it for any given link:1. For q = e 2�iN+k (6.2)one has W(unknotted irle in R3; k) = qN=2 � q�N=2q1=2 � q�1=2 (6.3)(In fat, this relation an be derived from the following two by using the thirdrelation on the unknot whose planar projetion is 1)2. If the link X is the unlinked union of X1 and X2 thenW(R3;X ; k) =W(R3;X1; k)W(R3;X2; k) (6.4)3. Most important | the so alled \skein relation" | if the three links L0, L+,and L� di�er only inside a small ball where they look as in �gure 6.3,
LLL

Figure 6.3. The links involved in the skein relation.then the following relation holds:�qN=2L+ + (q1=2 � q�1=2)L0 + q�N=2L� = 0 (6.5)where for brevity we wrote L� for W(R3; L�; k).57



To ompare these results with ours we �rst need to expand them in powers of 1=k,and thus we will write for a link L�W(R3; L�; k) � N � + a�k + b�k2 :From (6.3) and (6.4) it is lear that � is just the number of omponents of the linkL� if L� is the unlinked union of unknotted irles. In addition, the zeroth order partof (6.5) reads �N + + 0 +N � = 0 and as L+ and L� always have the same numberof omponents it means that the number of omponents of an arbitrary L� is givenby �. The terms of orders 1=k and 1=k2 in (6.5) give the following two relations:a+ � a� = 2�i(NN � �N 0); (6.6)b+ � b� = 2�ia0 + 2�iN(NN � �N 0)� �iN(a+ + a�): (6.7)If Ltw is the same one omponent link as L, only with its framing twisted posi-tively one, expanding the relation in �gure 6.2 in powers of 1=k gives two additionalrelations: a = atw + �i(N2 � 1) (6.8)b = btw + �iatwN2 � 1N � �N2 � 1N �iN2 + �2 (N2 � 1)� : (6.9)Theorem 4 The following assertions hold for links in R3:1. For a two omponent link L+, 1N(N2�1)a+ is 2�i times the linking number of itstwo omponents.2. For a single omponent knot L+ not neessarily with its preferred framing, a+(N2�1)is �i times its self linking number.3. For a single omponent knot L not neessarily with its preferred framing,~b def= 1N(N2�1)Re �b� a22N � is framing independent, and is in fat equal to our~W2(L).All of these assertions are easy onsequenes of (6.6)-(6.9). For example:Proof of 3 To get the framing independene of ~b just use (6.8) and (6.9) to expressit in terms of atw and btw, and then notie that the resulting expression di�ers fromthat of ~btw only by the real part of an imaginary number. To show that ~b is equal to~W2(L) we just need to show that they satisfy the same skein relation. But for knotsL� with their preferred framings a� = 0 by 2, and therefore using (6.7) one gets~b+ � ~b� = 1N(N2 � 1)Re(b+ � b�) = 2�iN(N2 � 1)a0whih by 1 equals to �4�2 times the linking number of the two knots obtained byutting L� as in �gure 4.5. It is easy to hek that ~b(the unknot) = �pi2=6. 258



Chapter 7Translating BRST to Feynmandiagrams
7.1 The BRST argumentTo show that the Lagrangian that we obtained gives rise to a metri independenttheory in spite of the expliit appearane of a metri in it, we will now introdue the`BRST' operator Q of Behi, Rouet, Stora, and Tyupin [8, 39℄ | the odd derivationating on the spae of all funtionals of A; �; �; , de�ned by the following formula:Q = ZM3 �(�ia + fabAbi) ÆÆAai + �a ÆÆ�a + 12fabb ÆÆa! : (7.1)Whih is more onventionally written as:QAi = �(�i + ad Ai); (7.2)Q� = 0; (7.3)Q� = �; (7.4)Q = 12[; ℄ = 12Gafabb: (7.5)In (7.2) the expression \ad Ai" stands for the operator de�ned by (ad Ai)def= [Ai; ℄,in (7.5) and (7.1), fab are the struture onstants of G, [Gb;G℄ = fabGa, and [; ℄doesn't vanish beause of the anti-ommutativity of .Lemma 7.1.1 QLtot(A; �; �; ) = 0.Lemma 7.1.2 There exists a funtional � of A, �, � and  (that depends on Ægij)suh that under gij ! gij + Ægij, ÆLtot = Q�:Lemma 7.1.3 Q orresponds to a vetor �eld of zero divergene.59



Lemma 7.1.4 QO = 0.Let us �rst use the above four lemmas to prove thatW = Z D' OeiLtotis formally metri independent [45℄. Indeed, under gij ! gij + ÆgijÆhOi = Æ Z D' O(')eiLtot= i Z D' O(')eiLtotÆLtot= i Z D' Q�O(')eiLtot�� : (7.6)Here we used ' as a olletive name for A, �, � and  and in the last equality we madeuse of the �rst two lemmas. Now we just use the third lemma and the well-known fatthat the integral of a derivative taken using a divergene-free vetor �eld is alwayszero to onlude our proof.Proof of lemma 7.1.1 This is just a simple alulation | one just applies Q to Ltotand sees it after some algebra. I will present this algebra here in a way that will beuseful for our later purposes. First, let us deompose Ltot to a sum of it's `free' partand it's `interation' part, and to a sum of it's bosoni part and it's fermioni part:Lbos = Lbos,free + Lbos,int= k4� ZM3 tr �A ^ dA+ 2��iAi�+ k4� ZM3 tr23 (A ^ A ^ A)Lferm = Lferm,free + Lferm,int = k2� ZM3 tr ���i�i�+ k2� ZM3 tr ���i[Ai; ℄�Let us now alulate the variation under Q of eah of those parts:QLbos,free = � k2� ZM3 tr(d+ [A; ℄) ^ dA+ ��i(�i + ad Ai) (7.7)QLbos,int = � k2� ZM3 tr(d+ [A; ℄) ^ A ^ A= � k2� ZM3 tr d ^ A ^ A (7.8)QLferm,free = k2� ZM3 tr���i�i� 12��i�i[; ℄� (7.9)QLferm,int = k2� ZM3 tr��Di[Ai; ℄ + ��i[�i + [Ai; ℄; ℄� 12�Di hAi; [; ℄i� (7.10)It is now easy to see that the �rst term of (7.7) anels (7.8), that the seond term of(7.7) anels the sum of the �rst term of (7.9) and the �rst term of (7.10), that the60



seond term in (7.9) anels the seond order part of the seond term of (7.10), andthat the remaining terms of 7.10 anel. 2Proof of lemma 7.1.2 Suppose that gij ! gij + Ægij. ThenÆLtot = k2� ZM3pgÆgijTijwith Tij = tr�(�i�)Aj + (�i�)(�j + ad Aj)�12gij �(�k�)gklAl + (�k�)gkl(�l + ad Al)��and then Tij = Q�ij for �ij = tr�(�i�)Aj � 12gij(�k�)gklAl�that is: ÆLtot = Q k2� ZM3pgÆgijtr�(�i�)Aj � 12gij(�k�)gklAl�! def= Q�: 2Proof of lemma 7.1.3div Q = ZM3 � ÆÆAai (�ia + fabAbi) + ÆÆ�a�a + 12 ÆÆafabb!= ZM3(�faa + 0 + faa) = 0:(Notie that for semisimple, Abelian and nilpotent Lie algebras eah of the two termsabove vanishes independently). 2Proof of lemma 7.1.4 This follows from the interpretation of O as the holonomyof A along X , and the fat that the Q variation of A is just the in�nitesimal gaugetransformation orresponding to . But for later referene, we an already write thisproof in terms of diagrams. First, let us write the diagrams representing O itself:
dim R ....Next, let us alulate QO term by term:
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...Consider the terms that have an �i vertex in them. There is, of ourse, integrationover the position of this �i, and this is the integral of a gradient whih an be replaedby a di�erene of boundary terms. These an be seen to be equal to the negatives ofthe terms that have an [Ai; ℄ vertex. 27.2 A simpler �nite dimensional analogueThe invariane argument shown above is, of ourse, quite inomplete. It uses some fa-miliar rules of integral alulus in an in�nite dimensional setting in whih the standardintegration theory does not apply. However, what we have desribed in setion 1.2an be seen as being a de�nition of an integration theory in our in�nite dimensionalsetting and we may wish to �nd how muh of the standard rules of alulus stillapply. The goal is to show that enough of standard alulus goes through, and thatthe invariane argument of the previous setion an be translated into the well-posedlanguage of Feynman diagrams. This will be done in the following two setions,beginning with a simpler �nite dimensional example that highlights one of the keypoints.In this setion, we will show that for any 1 � q � N the perturbative expansionof ZRN dNx ��qP + ikP�qjxj + 3ikP�qjkxjxk� eik( 12�ijxixj+�ijkxixjxk) (7.11)vanishes, where �q = �=�xq and P (x) is some monomial in x. Clearly, what we arenow set to show is true | the integrand in the above integral is a derivative,�q �P (x)eik( 12�ijxixj+�ijkxixjxk)� ;and if we believe the fundamental theorem of alulus, we are done. But in thein�nite dimensional ontext that we really are about we don't have the fundamental62



theorem of alulus and therefore we would like to �ne a diret ombinatorial proofat the level of Feynman diagrams that (7.11) indeed vanishes.De�ne C def= Diagrammatiexpansion of ZRN dNx (�qP )eik( 12�ijxixj�ijkxixjxk);I def= Diagrammatiexpansion of ZRN dNx 3ikP�qjkxjxkeik( 12�ijxixj+�ijkxixjxk):and F def= Diagrammatiexpansion of ZRN dNx ikP�qjxjeik( 12�ijxixj+�ijkxixjxk);It is lear that (7.11) is equal to C + F + I. We will show below that F = �I � C.Following the rules of setion 1.2.4, we see that the diagrams in F have the normal�ijkxixjxk verties and �ij propagators, and in addition to them two distinguishedverties. The �rst of these distinguished verties orresponds to the monomial P(see �gure 7.1), and the seond (denoted by the `magnet' symbol ) orrespondsto i�qjxj (see �gure 7.2). Let us take a loser look at the seond distinguished
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Figure 7.1. The vertex orresponding to the monomial x21x32.
Figure 7.2. The vertex orresponding to i�qjxj has only one ar emanatingfrom it beause i�qjxj is of degree 1. The magnet points to the diretion of`attration'.vertex . When it appears in a diagram, say as in
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1the �ij in the vertex gets multiplied by its inverse | the propagator onnetingto � | and so the whole piture an be replaed by the vertex
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2

2 1

1whih is one of the verties orresponding to ��q� ! Remembering that ouldhave been onneted to any of the other slots in �, we see that altogether all the waysto onnet to � add up to give exatly the verties that orrespond to ��q�. Nowthere are two possibilities for what � ould be. If � is one of the regular �ijkxixjxkverties, then the proess we just desribed (of `pulling with the magnet' gives one ofthe diagrams in �I. If � is the other distinguished vertex, the one orresponding tothe monomial P , then `pulling with the magnet' gives one of the diagrams in �C. 27.3 Translating BRST to Feynman diagramsLet us repeat the onsiderations of the previous setion in the slightly more ompli-ated ase of the BRST invariane proof of setion 7.1. ConsiderF def= Diagrammatiexpansion of Z D' (QLfree)untouhedO�eiLtot;I def= Diagrammatiexpansion of Z D' (QLint)untouhedO�eiLtot;and C def= Diagrammatiexpansion of Z D' (Q�)untouhed O�eiLtot;where the subsript \untouhed" means that when alulating QLfree and QLint noknown identities are to be used to simplify the resulting expressions | they shouldjust be left as they are.We will see that:1. C is equal to the variation with respet to the metri of W.2. F + I = 0.3. F = �I � C.These assertions learly imply ÆÆgW = 0, whih is what we've been aiming to prove.Eah of F , I, and C is a olletion of diagrams made using the usual propagatorsand the usual X2A, A3, and �A verties, only that eah of those diagrams has anadditional distinguished vertex of a form determined by the terms in (QLfree)untouhed,(QLint)untouhed, and Q�. In addition, the diagrams in F and I will have a seonddistinguished vertex, orresponding to �. For example, as Q� has in it a term:24� ZM3pgÆgijtr(�i�)�j; (7.12)64



some of the diagrams in C will have in them a single distinguished vertex of the form
i j

x

y

zδg
a b �! ZM3pgÆgijtab ��yiGdb(y; z)���yjGa(x; y)�The other diagrams in C will have a distinguished vertex of either of the followingforms:

δg δgProof of 1. Using Æ �D�1� = �D�1(ÆD)D�1 (7.13)whih holds for every linear operator D, one an see that
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and then for example
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These are exatly the diagrams in C! (And it turns out that the ombinatoris worksout right as well).Proof of 2. Just remove the subsripts \untouhed" and reread the proof of lemma1.Proof of 3. Just as in the previous setion, the diagrams in F will all have adistinguished vertex of one of the following four kinds, orresponding to the four
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terms in (7.7) and (7.9):
# #1 2

#3 #4

in eah of those verties, the slot marked by # has a di�erential operator ating onit. When a propagator is onneted to one of those slots, the relations de�ning thepropagator an be used to replae the propagator and the slot to whih it is onnetedby a Æ-funtion, e�etively alulating the variation under Q of the vertex on the otherend of that propagator.There are now few possibilities as for where does that other end land.1. The slot # on a vertex might be onneted by a propagator to anotherslot on the same vertex . Here are the two suh possibilities:
# #

2 3When # is replaed by a Æ-funtion as explained above, the resulting vertiesare:
andThese two verties are idential but with opposite signs, and therefore theyanel. This is exatly the fat proven in lemma 3 | that div Q = 0.2. The distinguished vertex marked by a might be onneted through theslot # to an X2A vertex. After the onneting propagator is replaed by aÆ-funtion as usual, we get exatly the diagrams in QO. These were shown toadd up to zero in the proof of lemma 7.1.4.3. The distinguished vertex might be onneted through the slot # to aninternal vertex of the diagram, of type A3 or �A. In this ase the propagator66



onneting the two verties is replaed by a Æ-funtion, the resulting diagramwill have a distinguished vertex whih appears in � (QLint)untouhed, and so weget just the diagrams in �I.4. The distinguished vertex might be onneted through the slot # to theother distinguished vertex - the one orresponding to �. In this ase the prop-agator onneting the two verties is replaed by a Æ-funtion, the resultingdiagram will have a single distinguished vertex, of the form �Q�. These areexatly the diagrams in �C. 2
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Chapter 8The isotopy invariane argumentIn this hapter we will prove (algebraily, without the neessary analysis whih is notyet done) that the perturbative oeÆients Wm(X) are invariants of knots embeddedin a at R3. Of ourse, if Wm(X) is a topologial invariant (does not depend on themetri g), then it has to be invariant under isotopies of the knot X, and so what weare set to show is atually a orrollary of the result of the previous hapter. However,the proof below di�ers in some ways from the proof in hapter 7, and this makespresenting this alternative proof worthwhile. The main advantage of the proof inthis hapter is that it `lives' entirely in at spae, and therefore it seems that it willbe easier to supplement it with the neessary onvergene analysis. Also, this proofis muh more expliit, and makes the mehanism by whih the variations of somediagrams anel the variations of others muh learer.8.1 Feynman rules in at spaeThe Feynman rules in at spae are, of ourse, speializations of the rules givenin hapter 2. However, in at spae1 these rules an be generalized slightly. Itturns out that the only way perturbation theory (in this ase) depends on the Lie-algebra is through the numerial weights that are assigned to eah diagram D by theontration of all the Lie-algebra indies in E(D), and that the invariane proof belowworks even if these numerial weights are replaed by arbitrary weights, so long asthese weights satisfy ertain relations that will be desribed below. Other solutionsof these relations (that do not neessarily ome from a Lie-algebra) might exist, andsuh solutions might orrespond to new link invariants.We therefore rede�ne Wm(X) to be given byXD's of order m C(D)S(D) Z E(D); (8.1)where S(D) is de�ned just as in hapter 2, E(D) is de�ned as in hapter 2 onlywithout inluding the Lie-algebra indies a, b, : : :, and the C(D)'s are arbitrary1Or atually, in arbitrary spae but relative to the trivial bakground onnetion.68



weights that `blind' to the di�erene between gauge and ghost propagators and thedi�erene between A3 and �A verties2 and satisfy the following relations:The \IHX" relation: Let the diagrams I, H, and X be idential outside a smalldomain, inside of whih they look as in �gure 8.1. Then their weights are expetedto satisfy C(I) = C(H)� C(X): (8.2)
UTSXHIFigure 8.1. The diagrams I, H, and X, and the diagrams S, T , and U .The \STU" relation: Let the diagrams S, T , and U be idential outside a smalldomain, inside of whih they look as in �gure 8.1. Then their weights are expetedto satisfy C(S) = C(T )� C(U): (8.3)Remark Atually, a little more are is neessary. The vertex A3 as it was de�ned in(2.2) is symmetri with respet to the three propagators emanating from it, being aprodut of two anti-symmetri terms. In the A3 vertex that we use in this hapter thetensor tab is removed, and so our A3 vertex is anti-symmetri. Therefore, if we wantto have unambiguous meaning to the Feynman rules, we must hoose an orientationto eah of the A3 verties in D | for eah A3 vertex, hoose one of the two possibleyli orderings of the three propagators meeting in that vertex. We assume thatC(D) = �C(D0) if D0 di�ers from D only in the orientation of a single vertex, andwe use the onvention that in a planar projetion of a diagram eah of the verties isoriented ounterlokwise (	).With our simplifying assumptions, some of the rules of hapter 2 beome a bitsimpler:
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k
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i �! i2� ZM3 dx �ijk; (8.4)
lz �! 12� ZM3 dz �lz; (8.5)i j� � � �x y �! Vij(x; y) = i�ijk(x� y)k2jx� yj3 ; (8.6)and �������!x y �! G(x; y) = 12jx� yj : (8.7)2Namely, if in a diagramD a loop of ghost (��������!) propagators onneted by �A verties isreplaed by a loop of gauge ( � � � � ) propagators onneted by A3 verties, then C(Dbefore) =C(Dafter). 69



8.2 The variation of a diagram and the spider'sjourneyThe m'th term Wm in the perturbative expansion of W(X; k) is given by a weightedsum of integrals of ertain algebrai expressions whih are most neatly representedby Feynman diagrams as in (8.1), (8.4)-(8.7). Our aim in the rest of this hapter isto prove3 that under X ! X + ÆX = X + !,ÆWm =XD C(D)S(D) ÆZ E(D) = 0:To do that, we have to alulate ÆR E(D) for an arbitrary diagram D.Let us �rst desribe the `main part' of the omputation, disregarding variousboundary and ontat terms whih will be the subjet of the next setion. Chekingformulae (2.1) and (2.4) we see that the `Vij(x; y)' onneted to eah X2A vertex inD an be regarded as 1-form (with respet to either the variable x or the variable y),and that the X2A vertex together with the s integration an be interpreted as theintegral of that 1-form along the 1-yle represented by a segment of the knot X. It istherefore lear that when the knot X is deformed, the variation of our integral R E(D)(whose only X dependene is in the X2A verties) is given4 by the evaluation of theexterior derivative of V on the in�nitesimal surfae S spanned by the deformationof X. This statement is reprodued in diagrams in �gure 8.2. In that �gure, a new
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termsFigure 8.2. The six diagrams arising from the omputation of Æ R E(D) for Dwith 3 type X2A verties.vertex is introdued, orresponding to the evaluation of dLV on S:

S
d i

y �! � _Xj!k  ��xkVji(x; y)� ��xj Vki(x; y)!�����x=X(s) : (8.8)We see that in alulating ÆR E(D) we �nd expressions that involve dLV . Wheneversuh a term is enountered, we will use `the key relation' of hapter 3.1 to replae it3Formally prove. Namely, present the algebra and ombinatoris without onsidering the muhharder analysis problems.4Well, just almost given. There is a boundary orretion whih will be disussed in the nextsetion. 70



by the right hand side of that relation. Reall that the key relation states that thereexists a (2; 0)-form F on R3 for whih(dLV )ij;k(x; y) = (dRF )ij;k(x; y) + 2�i�ijkÆ(x� y): (8.9)In diagrams, the relation (8.9) is reexpressed asd� � � �ij k = d�����>�����ij k + �ijk: (8.10)The last relation that we will use repeatedly is a ombination of integration byparts and Leibnitz' rule desribed by the following diagram:
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dd : (8.11)The orresponding formula is:i2� ZR3 dw �mnp  ��wmFij;�(x; w)!Vpk(w; y)Vnl(w; z)= �i2� ZR3 dw �mnpFij;�(x; w) Vnl(w; z) ��wmVpk(w; y) + Vpk(w; y) ��wmVnl(w; z)!= i4� ZR3 dw �mnpFij;�(x; w) �Vnl(w; z)(dLV )pm;k(w; y)� Vpk(w; y)(dLV )mn;l(w; z)� :Summarizing, we �rst ompute ÆR E(D) as in �gure 8.2, and then alternate repla-ing dLV by dRF as in (8.10) and integrating by parts as in (8.11). We an visualizethis proedure by imagining a spider walking on our diagram on gauge (� � � � )propagators, beginning from some X2A vertex, hanging every gauge (� � � � )propagator that he had followed to a dotted (�����>�����) propagator as in (8.10), anddeiding whether to turn left or right whenever he reahes an A3 vertex as in (8.11).The variation ÆR E(D) is then given by a sum over all possible `spider walks' on Dof various boundary and ontat terms that we have so far ignored and over all the`deadends' | spider walks that annot be ontinued further beause the spider ar-rived at an X2A vertex or a �A vertex, or has stepped on his own footsteps. We willonsider all these boundary terms, ontat terms, and deadends in the next setion.8.3 Boundary terms, ontat terms, and deadends8.3.1 The beginning of the journeyThere are two types of diagrams produed in the evaluation of ÆR E(D) even beforethe spider begins his journey. The �rst of them is the boundary term in �gure 8.2 |71



if the 1-form V�i(�; y) was evaluated on a losed yle, there would have been no needfor a orretion in �gure 8.2. But atually, it is evaluated on a yle whose ends aregiven by two other X2A verties in D, and more are need to be taken near the ends.Stokes' theorem says that the integral of V�i(�; y) around the omplete boundary ofthe part of S lying between these two X2A verties is given by (8.8). This boundaryis made of four piees | two long and almost parallel piees that follow X and whosedi�erene is exatly what we are trying to ompute, and two in�nitesimal piees nearthe ends (see �gure 8.3). The ontributions to (8.8) from the two latter piees needsto be subtrated o�, and this is done by the following `R1' verties:The ontext: The vertex R1: The formula for R1:
; s

j

i

z

y � _Xk!l � _X l!k�Vli(X; y)Vkj(X; z)The above retangle is the form in whih all the ontributions to ÆWm will bedesribed. The left most olumn is the `ontext olumn' that desribes the ontext inwhih the presently disussed term appears | our term appears whenever there aretwo neighboring X2A verties in a diagram D, and we are onsidering one of them asthe boundary of the other's domain of integration. The slash (=) on the knot segmentonneting these two verties indiates that the present ontribution omes when thelength of this segment vanishes. The enter olumn is a diagram part that servesas the symbol of the urrently disussed ontribution to ÆR E(D). To get the preiseformula for this ontribution, replae the symbol R1 by the formula in the right mostolumn, and proeed to evaluate the other parts of D as in setion 8.1.The seond ontribution to ÆR E(D) that arises even before the beginning of thespider's journey is the ontat term arising from the Æ-funtion in (8.10), when thisformula is �rst applied:The ontext: The vertex R2: The formula for R2:
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y �klm�mnp!k _X lVnj(X; z)Vpi(X; y)8.3.2 The journeyDuring the journey itself, in whih the operations (8.11) and (8.10) are alternated,there is only one kind of `left over' ontribution | the ontat term arising from theÆ-funtion in (8.10):
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SdFigure 8.3. The boundary term R1: In these diagrams, the solid ellipses rep-resent the knot X and the dashed ellipses represent the deformed knot X + !.The �rst two diagrams represent the part of the ontribution to ÆR E(D) omingfrom varying the position of one of the X2A verties in D. This X2A vertex isintegrated over a range (marked by a double arrow $) bounded by two neigh-boring X2A verties. By Stokes' theorem, the quantity that we are interestedin, the di�erene of the �rst two diagrams, is given by an integral of dLV on thevariation surfae S (represented by the third diagram), plus the evaluation of Von the two short segments onneting the solid and the dashed ellipses near thebounding X2A verties. This last ontribution is given by the term R1.
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The ontext: The vertex R3: The formula for R3:
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�i4� ZR3 du �npq�pqr�rstFij;�(x; u)�Vkn(y; u)Vms(w; u)Vlt(z; u)= �i2� ZR3 du �nstFij;�(x; u)�Vkn(y; u)Vms(w; u)Vlt(z; u)An example for a term of this sort will be the term
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1 �! �18�2 Zylily ordered s1�5ds1�5 dy dz !i(s1) _Xj1 _Xm2 _Xu3 _Xs4 _Xp5�Fij;�(X1; y)�nklVmn(X2; y)Fkl;�(y; z)��qrtVuq(X3; z)Vsr(X4; z)Vpt(X5; z) (8.12)
that arises in the variation of the diagrams

, and :Notie that in the translation proess in (8.12) we used the following two rules todeal with dotted (�����>�����) propagators and the F 2A vertex onneting two dottedand one gauge propagator, in addition to the standard rules of setion 8.1:1. x y�����>�����ij � = Fij;�(x; y)  = �ijk i(x� y)k2jx� yj3! : (8.13)2.
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x �! i4� ZR3 dw �lmnFij;�(x; w)Vkl(y; w)Fmn;�(w; z) (8.14)8.3.3 The spider returns to the linkRight before the spider arrives at the link bak again we get the following ontatontribution, as usual from the Æ-funtion in (8.10):74



The ontext: The vertex R4: The formula for R4:
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�12�lmn�mnp _XpFij;�(z;X)Vkl(y;X)= � _X lFij;�(z;X)Vkl(y;X)When the spider arrives at the link, we get the following `dead end' ontribution:
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sij d �! � _Xk ��zkFij;�(y; z)�����z=X (8.15)Notie that here we are taking the line integral of a gradient � ��zkFij;�(y; z)� along asegment of the knot X. Thus by the fundamental theorem of alulus (8.15) an bewritten as the di�erene of the values of Fij;�(y;X(s)) at the two end points of theline of integration. Suh an endpoint might be a regular X2A vertex, in whih asewe get the term:The ontext: The vertex R5: The formula for R5:
; s

z

y k

ij

_X lFij;�(z;X)Vkl(y;X)Or else, suh an end point might be the speial X2A vertex from whih our spiderbegan its journey. The term orresponding to this later possibility is:The ontext: The vertex R6: The formula for R6:
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s Fij;�(z;X)!k _X lFkl;�(X; y)
8.3.4 The spider meets a ghostAs usual, we �rst have a ontat ontribution from right before the spider-ghostmeeting:
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The ontext: The vertex R7: The formula for R7:
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�14� ZR3 du �lmn�mnp(�puG(u; w))G(u; z)�Fij;�(x; u)Vkl(y; u)= �12� ZR3 duG(u; z)Fij;�(x; u)�Vkl(y; u)�luG(u; w)Then we also get a `dead end' ontribution
w

z

y
x
ij

d �! 12� ZR3 dwG(y; w) ��wkFij;�(x; w)! �kwG(w; z); (8.16)whih an be expanded further by integrating w by parts and using Leibnitz' rulessimilarly to what was done in (8.11). There are two resulting terms. The �rst one iswhen Leibnitz' rule instruts us to turn left in (8.16). In this ase there isn't reallymuh that we an do, so we just leave the resulting term as it is:The ontext: The vertex R8: The formula for R8:
w

y
x

z

d

ij

�12� ZR3 dw Fij;�(x; u) (�wk G(y; w))��kwG(w; z)The seond possibility is that Leibnitz' rule instruts us to turn right in (8.16).In this ase we get
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�! �12� ZR3 dw Fij;�(x; u)G(w; y)�wk �kwG(w; z)= ZR3 dwFij;�(x; u)G(w; y)Æ(w� z):Integrating w and bringing into sight the �A vertex at the z side of the w-z propa-gator, we get the following ontribution to ÆR E(D):
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The ontext: The vertex R9: The formula for R9:
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ij 12� ZR3 dwG(u; z)Fij;�(x; u)Vkl(y; u)��luG(u; w)8.3.5 The spider meets his own footstepsThe ontat ontribution from right before the meeting is:The ontext: The vertex R10: The formula for R10:
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�i8� ZR3 du �nst�str�rpqFpq;�(u; w)�Flm;�(y; u)Fij;�(x; w)Vkn(y; u)= �i4� ZR3 du �npqFpq;�(u; w)�Flm;�(y; u)Fij;�(x; w)Vkn(y; u)In the above diagram, the `footsteps' are assumed to be the dotted (�����>�����)propagators onneting x to u and u to w, and the spider omes bak to the areafrom the diretion of z. This explains the `twist' in the ontext olumn.There is also the `dead end' ontribution, whih we simply leave as it is:The ontext: The vertex R11: The formula for R11:
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�i4� ZR3 dw Fij;�(x; w)�mnpFnp;�(w; z)��wmFkl;�(y; w)8.3.6 The journey ends before it really startedThe spider's journey might end before it really gets going if he has a too short hainof gauge (� � � � ) propagators to travel on | namely, if that hain is of length1 | namely, if the spider starts on an X2A vertex that is onneted via a gauge(� � � � ) propagator to anything but an A3 vertex. The three possibilities are:
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The ontext: The vertex R12: The formula for R12:
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z

y �iG(y;X)!i _Xj�ijk �kwG(w; z)���w=XThe ontext: The vertex S: The formula for S:
21 �ijk!i _Xj1 _Xk2 Æ(X1 �X2)andThe ontext: The vertex T : The formula for T :

T �ijk!i _Xj _XkÆ(X �X)Notie that the last two ontributions di�er only by the separation between thetwo ends of the gauge propagator being treated. In T these two ends are assumed tobe adjaent, while in S they are assumed to be separated by some other X2A verties.8.4 anellationsIn the previous setion we omputed ÆWm and found that it is given by a sum of14 types of ontributions: R1-R12, S, and T . In this setion we will see that theseontributions all anel eah other, and therefore ÆWm = 0. Let Rn denote thetotal ontribution to ÆWm that omes from diagrams of type Rn, S denote the totalontribution of type S, and T denote the total ontribution of type T .Proposition 8.4.1 R1 +R2 = 0: (8.17)Proof The identity �klm�mnp = Ænk Æpl � ÆpkÆnl (8.18)shows that verties of type R2 are, in fat, preisely the negatives of to verties oftype R1, while the ontext olumns in the de�nitions of these two verties shows thatR1 omes with weight C(T )�C(U), and that R2 omes with weight C(S). The STUidentity (8.3) onludes the proof. 2Proposition 8.4.2 R3 = 078



Proof Diagrams of type R3 ome with weights C(I), �C(H), or C(X), as an beread from the ontext olumn in the de�nition of R3. The IHX identity (8.2) showsthat these weights anel eah other. 2Proposition 8.4.3 R4 +R5 = 0Proof Similarly to (8.17) this identity follows from the STU identity (8.3). 2The proofs of the following three propositions rely on the observation that a hainof dotted (�����>�����) propagators onneted by F 2A verties is essentially equivalentto a hain of ghost (�������!) propagators onneted by �A verties:i2�lij 0BBBB�
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1CCCCA :(8.19)This identity is an immediate onsequene of the de�nition of the ghost propagator(8.7), the de�nition of the dotted propagator (8.13), the de�nitions of the F 2A and�A verties ((8.14) and (8.5)), and the identity�lnp�npq = 2Ælq:Proposition 8.4.4 R8 +R11 = 0:Proof Immediate from the dotted-ghost relation (8.19), the de�nition of the R8 andR11 verties, and the fat that the diagrams of type R8 have one more ghost loopthan their ounterparts of type R11 and therefore they get opposite signs from (2.5).2Proposition 8.4.5 R6 +R12 = 0:Proof Immediate from (8.19), (8.18), (2.5), and the STU relation (8.3). 2Proposition 8.4.6 R7 +R9 +R10 = 0:Proof Immediate from the dotted-ghost relation (8.19), from (2.5), and from theIHX relation (8.2). 279



Proposition 8.4.7 S = 0:Proof We just have to remember that the points 1 and 2 in the de�nition of theterm S are always distint, and therefore Æ(X1 �X2) = 0. 2Remark This proof is atually more interesting when it breaks down | when theknot X is deformed in suh a way that a self-intersetion is reated. In this ase thepoints 1 and 2 are not neessarily distint, Æ(X1 � X2) an be non-zero, and whenit is non-zero we get a skein-like relation similar to Vassiliev's relation (9.23). It isexatly this term S that assures that Wm(X) is a non-trivial knot invariant!Proposition 8.4.8 If one is willing to be a bit naive,T = 0:Proof The formula for the term T isdet � _X���! ��� _X� Æ(X �X):If one is willing to be a bit naive, then the determinant in the �rst part of this formula,det( _Xj!j _X), vanishes beause it has two equal olumns and this anels the in�nityof Æ(X �X). 2Remark Atually, proposition 8.4.8 is blatantly false. 0 �1 = 0 doesn't make muhmathematial sense as it stands, partiularly when the 1 is suh a `large' 1 | itis a three dimensional Æ-funtion integrated on just a line! So learly, more areneeds to be taken when onsidering the vertex T . This is essentially what is donein setion 3.3, where it is shown that the failure of proposition 8.4.8 is proportionalto the total torsion � of X. I believe that the same \orretion" proedure that wasused there | subtration of a ertain multiple of � | an be used in the higher loopase introduing a framing dependene to Wm. This is yet to be proven.Either way, whether by hoosing to be naive or by believing that the failure ofproposition 8.4.8 an be orreted as in setion 3.4, propositions 8.4.1-8.4.8 prove thatÆWm(X) = R1 + : : :+R12 + S + T = 0;and therefore Wm(X) should be a knot invariant. 2
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Chapter 9The Lie-algebrai weights ofFeynman diagrams
9.1 IntrodutionThe purpose of this hapter is to introdue a ertain ombinatorial-algebrai problem,disuss its signi�ane to knot theory (and to a lesser extent, to quantum �eld theory),and present some solutions of it. The most general solution to this problem has notyet been found, and �nding it is likely to lead to the disovery of new knot and linkinvariants.In this hapter, the words losed diagram will always refer to a graph made ofa ertain number of direted ellipses (alled Wilson loops) marked by the naturalnumbers 1; : : : ; I, and a ertain number of dashed lines (alled propagators). Thepropagators and the Wilson loops are allowed to meet in two types of verties | onetype (alled type R2G) in whih a propagator ends on one of the Wilson loops, andanother (alled type G3) onneting three propagators. We assume that the seondkind of verties are oriented | that one of the two possible yli orderings of thethree propagators meeting in suh a vertex is spei�ed. The order of suh a diagramswill be half the total number of verties in it.

Figure 9.1. An example for a losed diagram of order 6.Figure 9.1 is an example for suh a diagram with I = 2. In this �gure (as inthe rest of this hapter) eah of the verties is oriented ounterlokwise (	). This81



onvention means that the two diagram parts in �gure 9.2 are not equivalent. Also,remember that our diagrams are not allowed to have higher than ubi verties. It istherefore impliitly understood that when four or more lines meet at the same point,that point is not a vertex and those lines pass eah other without \interation".
Figure 9.2. Two diagram parts whih di�er only by the orientation of one oftheir verties.We will be looking for assignments D ! C(D) that assign a weight C(D) insidesome pre-hosen Abelian group to eah diagram D, and satisfy the following tworelations:The \IHX" relation: Let the diagrams I, H, and X be idential outside a smalldomain, inside of whih they look as in �gure 9.3. Then their weights are expetedto satisfy C(I) = C(H)� C(X):

XHI Figure 9.3. The diagrams I, H, and X.The \STU" relation: Let the diagrams S, T , and U be idential outside a smalldomain, inside of whih they look as in �gure 9.4. Then their weights are expetedto satisfy C(S) = C(T )� C(U):Main problem Find all suh assignments C.Suh assignments will be alled weight systems.There are very good reasons to believe that eah weight system will give riseto a link invariant. When one onsiders the perturbative expansion of the Chern-Simons quantum �eld theory as desribed here, one enounters diagrams muh likethe above. The diagrams in the Chern-Simons theory orrespond to integrals, and Ihave shown in hapter 8 that (assuming some onvergene whih is yet to be proven)these integrals summed with `orret' weights add up to give link invariants. The82



S T UFigure 9.4. The diagrams S, T , and U .word `orret' in the previous sentene means exatly \satisfying the relations IHXand STU". In hapter 4 I have arried out this program for the diagrams of order� 2, and in [42, 43℄ Witten has shown that the HOMFLY polynomial [23℄ an bederived from the Chern-Simons quantum �eld theory, and therefore an probably bere-derived using our tehniques. The weight system C that should orrespond tothe HOMFLY polynomial is presented in setion 9.5. I don't know whih are theknot invariants orresponding to most of the other weight systems presented in thishapter, and I do not know whether there are further weight systems beyond thosepresented here.As was (impliitly) shown in [42℄ and disussed in this thesis from the perturbativepoint of view, to eah weight system should orrespond a three-manifold invariant aswell.In setion 9.6 a seond relation, due to Vassiliev [41℄ and Birman-Lin [10℄, betweenthose weight systems and knot theory is disussed.9.2 The methodLet F be a �eld, and let D be a losed diagram. I will now show how, given someLie algebrai data, we an assoiate an element CG(D) of F to D. Of ourse, theonstrution below is preisely the `Lie-algebrai' part of the onstrution in hapter 2.Let G be a �nite dimensional Lie algebra over the �eld F, R1; : : : ; RI a list of�nite dimensional representations of G (one for eah Wilson loop in D) of dimensionsd1; : : : ; dI, and let tr be a non-degenerate F-valued ad-invariant bilinear form on G
G,where ad denotes the adjoint representation of the Lie algebra G on its underlyingvetor spae. Let fGag be a basis for G, fr�i g a basis of Ri, and de�ne the tensors tab,tb, f ab, tab, and R�ia� by the following formulae:tab = tr(Ga;Gb);tabtb = Æ a ;[Ga;Gb℄ = f abG;tab = f dabtd;Ri(Ga)r�i = R�ia�r�i :To de�ne CG(D), �rst mark every Wilson loop segment in D by a greek letter83



�; �; : : :, and every end of every propagator by a small letter in the English alphabet| a, b, : : :.
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b c
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βγ

Figure 9.5. An unmarked diagram and a marked diagram.I will now desribe how to onstrut a ertain algebrai expression out of D andits marking:1. To eah type G3 vertex in D assoiate a t��� symbol with the � � � replaed by theletters marking that vertex, piking those letter in an order onsistent with theorientation of the vertex. Using the invariane of tab it is easy to hek thattab = tba = tab, and so the partiular order hosen is immaterial.2. To eah propagator in D assoiate a t�� symbol with the dots replaed by theletters marked at the ends of that propagator.3. To eah type R2G vertex assoiate an R��� symbol with the dots replaed by theletters marking that vertex, as in the �gure below:
a

βγ �! R�a4. Take the produt of all the above mentioned t���, t��, and R��� symbols.5. Sum over �; �; : : :, and a, b, : : :, and all the result CG(D).For example, if D is the diagram in �gure 9.5, then (summation understood)CG(D) = ta0b00ta0atb0bt0R�aRb�R�� (9.1)Well-de�nedness We will now hek that CG(D) is independent of the hoiesof bases that were made. Clearly, CG(D) is independent of the hoie of fr�g | asis demonstrated in (9.1) the representation R appears only through matrix traes ofthe form tr R(Ga)R(Gb)R(G):Suppose that f �G�ag is a di�erent basis of G. One an de�ne �t�a�b, �t�a�b�, and �R��a� withrespet to this new basis, and use these tensors to de�ne �CG(D). We will show now84



that �CG(D) = CG(D). The two bases are related by some linear transformation |that is to say, there exists a matrix fM �aag for whih�G�a =Ma�aGaOne an hek rather easily that the new tensors are given by the old ones throughthe following formulae: �t�a�b = Ma�aM b�b tab�t�a�b = (M�1)�aa(M�1)�bbtab�t�a�b� = Ma�aM b�bM � tab�R��a� = Ma�aR�a�where (M�1)�aa is the inverse matrix of Ma�a . It is now easy to see that when theseexpressions for �t�a�b, �t�a�b�, and �R��a� are ombined together to form �CG(D), every matrix(M�1)�aa anels every Ma�a .9.3 Relations between the CG(D)'s9.3.1 Tensors and relations between themSo far, we used the fat that the tensors that went into the onstrution of CG(D)ame from a Lie algebra and satis�ed ertain relations only in a very mild way | inheking that tab = tba = tab. We will now see what relations among the CG(D)'san be dedued from the relations that tab, tab, and R�a� are known to satisfy.First, a slight generalization. Using more or less the same proedure as before wean assign to every non-losed diagram D, whih is allowed to have propagators with\free" ends and non-losed Wilson lines, a tensorT = T (D) 2 G
n 
 JOi=1 �Ri 
 �Ri� : (9.2)Here n is the number of propagators with free ends, R1; : : :RJ are the representationsorresponding to the non-losed Wilson lines, and the �Ri's are their duals. It is learhow to de�ne T | one just needs to follow the same steps as in the de�nition ofCG, and as D is not losed some of the indies will appear only one in the resultingexpression and instead of being summed over these indies will serve as the indiesof the tensor T . For example:
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Claim 1 The two diagrams in �gure 9.2 orrespond to tensors whih are the negativesof eah other.Proof The is simply the fat that the Lie braket is anti-symmetri. 2Claim 2 Let the diagrams S, T , and U be as in �gure 9.4. Then the tensors orre-sponding to them satisfy: T (S) = T (T )� T (U) (9.3)Proof This is simply the fat that R is a representation. That is, that R([Ga;Gb℄) =R(Ga)R(Gb)�R(Gb)R(Ga). 2Claim 3 Let the diagrams I, H, and X be as in �gure 9.3. Then the tensors orre-sponding to them satisfy: T (I) = T (H)� T (X) (9.4)Proof Translating I, H, and X into their orresponding tensors, it is easy to see thatthis is simply the Jaobi identity! (In fat, this laim an be regarded as a partiularase of the previous one, asserting that the adjoint ation of a Lie-algebra on itself isa representation). 29.3.2 SewingGiven two open diagrams A and B and a (partial) orrespondene ' between theiropen ended lines whih sends a propagator to a propagator and an ingoing (outgoing)Wilson line to an outgoing (ingoing) Wilson line labeled by the same representation,one an de�ne their join A#B to be the diagram obtained by sewing the externallines of A with those of B aording to the orrespondene '. It is also possibleto sew T (A) to T (B) by ontrating their indies as ditated by ', (using tab tolower the propagator indies). It is lear that the resulting T (A)#T (B) will equalT (A#B). In partiular, if A#B is a losed diagram, then CG(A#B) = T (A)#T (B).(See �gure 9.6).
=#Figure 9.6. Sewing two diagrams.
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Thus (9.4) and (9.3) an be used to derive relations between losed diagrams |(9.4) says that if three diagrams �I, �H and �X are idential outside of a small domainin whih they look like the diagrams I, H, and X of �gure 9.3, then they satisfyCG(�I) = CG( �H)� CG( �X): (9.5)Similarly, (9.3) implies CG( �S) = CG( �T )� CG( �U): (9.6)The last two relations show that D ! CG(D) is a weight system in the sense ofsetion 9.1.Lemma 9.3.1 For any open diagram D, T = T (D) is an invariant tensor (withrespet to the natural ation of G on eah of the omponents in (9.2)).Proof The reason why this lemma is true, is that T an be seen as the ontrationof a olletion of invariant tensors | the t���, the t�� and the R��� are all invariant. Thisstatement an be translated into a ombinatorial invariane proof. I will just skeththis proof here, and supplement this sketh with a simple example | �gure 9.7.
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Figure 9.7. A simple invariane proof | the tensor D is the sum of 1-12.Relation IHX shows that 1+ 2+ 3 = 10+ 11+ 12 = 0, relation STU showsthat 4+5+6 = 7+8+9 = 0, laim 1 shows that 1+12 = 2+6 = 7+11 = 0,and 4+ 9 = 0 by the hoie of signs. It follows that 3+ 5+ 8+ 10 = 0. Thisis exatly the fat that T is an invariant tensor.87



For simpliity, I will disregard � signs here. Say D has n internal verties. Pik apoint P outside of D and onsider the 3n diagrams obtained by onneting P usinga propagator to eah of the three lines emanating from eah of the n verties in D.Let D be the sum of the tensors orresponding to these 3n diagrams. Eah internalline in D has two terms orresponding to it in D oming from the two verties at theends of that line, and with the proper hoie of signs these two terms exatly anel.The only diagrams that still ontribute to D are those in whih P is onneted to anexternal line, and, if P is marked by a, these are exatly the diagrams that representthe variation of D with respet to Ga.On the other hand, the relations (9.4) and (9.3) show that eah group of threediagrams made by onneting P to the three lines emanating from a single propagatororresponds to tensors that add up to 0. D is just a sum of suh groups, and thisonludes the proof. (See �gure 9.7). 2Remark The behavior ofD! T (D) under sewing means that we've atually de�neda topologial Quantum Field Theory of dimension 1, satisfying Segal's axioms (see[4, 46℄). Lemma 9.3.1 shows that the vetor spae assigned by our QFT to n + 2Jpoints, n of whih labeled `G', J labeled R1; : : : RJ , and J labeled �R1; : : : �RJ , is thespae of invariant tensors in G
n 
 JOi=1 �Ri 
 �Ri� :Every diagramD with n+2J free ends (of the appropriate kinds) gives a vetor T (D)in that vetor spae.Lemma 9.3.2 If the representation R is irreduible, the fatorization property illus-trated in �gure 9.8 holds. (In that �gure, the blobs and simply representarbitrary subdiagrams with an arbitrary number of onnetions to the Wilson loop).
dim R

Figure 9.8. The fatorization property.Proof Clearly, the two sides of the equation in �gure 9.8 represent two ways ofontrating the tensors A�� and B�� orresponding to the two open diagrams obtainedby removing the \bridge" in the left hand side of that equation. But from lemma88



9.3.1 and the irreduibility of R it follows that A and B must be multiples of theidentity matrix: A�� = aÆ�� ; B�� = bÆ��:This redues �gure 9.8 to the trivial assertiondaÆ��bÆ�� = aÆ��bÆ��: 2Remark taking the blobs and to be empty shows that it's natural tode�ne CG( ) = dimR = d.9.4 Evaluation of some diagrams for simple alge-brasIn this setion G will be a simple Lie algebra over the real or omplex �eld, and Rwill be an irreduible representation of G. In this ontext, it is possible to evaluatesome diagrams in a relatively simple way.The key point is that under the above onditions, the spaes of invariant tensorsin G 
 G and in R 
 �R are both one-dimensional, and therefore one an speak of`ratios' of invariant tensors in G 
 G or in R
 �R.De�nition 1 The onstants r and g are given by the following ratios1:g = 0BBBBBB� 1CCCCCCA r = 0BBBBBBB� 1CCCCCCCA : (9.7)(Notie that by lemma 9.3.1 the above tensors are all invariant).In the following few lines, we see how the relations from the previous setion anbe used to evaluate CG for all losed diagrams with a single Wilson loop and orderssmaller than three. For brevity, we omit the symbol CG below.= d by the remark after lemma 9.3.2 (9:8)= r = dr by (9.7) and (9.8) (9:9)= g = dgr by (9.7) and (9.9) (9:10)= r = dr2 (9:11)= 12 � � � = 12 = 12dgr by (9.3) (9:12)= � = dr �r � 12g� (9:13)1Using the notation of hapter 5, g = 2(G) and r = 2(R).89



Similarly: = dgr2= dr3= dr3= dr2(r � 12g)= 12dgr2= 12dg2r= 14dg2r

= 12dgr(r� 12g)= dr(r � 12g)2= dgr(r� 12g)= 14dg2r= 0= dr(r � 12g)(r � g)= dg2rUnfortunately, there are some order four (and higher) diagrams that annot beevaluated using these tehniques. One suh diagram is .The following table ontains the values of d, g, and r for some lassial Lie algebraswith their de�ning representations (and tab taken to be the matrix trae in thoserepresentations): G R d g rsl(N;C) CN N 2N N2 � 1Nso(N;C) CN N N � 2 N � 12sp(N;C) C2N 2N 2(N + 1) N + 12Remark One an hek that if G is a real Lie algebra and GC is its omplexi�ationthen CG � CGC. Therefore the above table an be used to evaluate d, g, and r for anyof the real forms of sl(N;C), so(N;C), or sp(N;C) in their de�ning representations.
90



9.5 Complete evaluation for the lassial algebrasBy the remark at the end of the previous setion, to alulate CG for the lassialalgebras (in their de�ning representations) it is enough to onsider the four omplexlassial algebras.The �rst step is to use relation STU repeatedly, with eah usage reduing thenumber of G3 verties by one, until we are left with a diagram D that has no G3verties. The basi building blok of suh diagrams is the tensorT ��Æ = 6?�� Æab :This tensor will be evaluated expliitly for eah of the omplex lassial algebras, andthe results will turn out to have representations in terms of diagrams that have nopropagators in them. Using this repeatedly, we are left with disjoint unions of irleswhih again are easy to evaluate expliitly.I will show in detail the omputations for so(N;C), and just state the results forgl(N;C), sl(N;C), and sp(N;C).9.5.1 The algebra so(N;C).A onvenient hoie of generators for so(N;C) are the N � N matries Mij (i < j),given by (Mij)�� = Æi�Æj� � Æi�Æj�:That is, the ij entry of Mij is +1, the ji entry of Mij is �1, and all other entriesof Mij are zero. The invariant bilinear form that we pik on so(N;C) is the matrixtrae in the de�ning representation, and sot(ij)(kl) def= tr(MijMkl) = �2ÆikÆjl:Inverting the N(N�1)2 � N(N�1)2 matrix t(ij)(kl) we gett(ij)(kl) = �12ÆikÆjl; (9.14)and so T ��Æ = Xi<j;k<l t(ij)(kl)(Mij)��(Mij)Æ: (9.15)Using (9.14) and some algebrai manipulations we an simplify (9.15), and then rep-resent it by a diagram:(9.15) = 12(Æ�ÆÆ� � Æ�Æ�Æ) = 12 0BBBB� & %$'�� Æ� �������������� Æ1CCCCA : (9.16)91



The last thing to note is thatCso(N;C)(k disjoint irles) = Nk:Example For so(N;C) in its de�ning representation we an alulate d, r, and gusing: (suppressing the `Cso(N;C)' symbols)d = = Ndr = = 12 � � � = N(N � 1)2dr �r � 12g� = = 14 � 12 + 14 = N(N � 1)4 :9.5.2 The algebra gl(N;C).Similar onsiderations lead to the even simpler rule6?�� Æ(kl)(ij) = & %$'�� Æ;while retaining Cgl(N;C)(k disjoint irles) = Nk:Example For gl(N;C) in its de�ning representation= � = � = N(N2 � 1)9.5.3 The algebra sl(N;C).The rule here is 6?�� Æ(kl)(ij) = & %$'�� Æ� 1N �� Æ;with the usual Csl(N;C)(k disjoint irles) = Nk:Example For sl(N;C) in its de�ning representation we an alulate d, r, and gusing: d = = Ndr = = � 1N = N2 � 1dr �r � 12g� = = � 2N + 1N2 = 1�N2N :92



9.5.4 The algebra sp(N;C).This is the most ompliated ase. Let D be a diagram with no G3 verties. Theomputation of Csp(N;C)(D) now proeeds in two steps:1. Mark eah Wilson loop segment in D with either the symbol P or the symbolQ, in suh a way that the number of P 's entering eah subdiagram of D of theform is equal to the number of P 's leaving it. (Remember that the Wilsonloops are direted).2. Simplify D using the following rules:6? PPPP = 6? QQQQ = 126? PPQQ = 6? QQPP = �126? QPQP = 6? PQPQ = 12 0B� + 1CA :3. Similarly to the usual,Csp(N;C)(k disjoint marked irles) = Nk:(Notie that this time dimR = 2N 6= N).Example For sp(N;C) in its de�ning representation we an alulate d, r, and gusing: d = ="!# P +"!# Q = 2Ndr = ="!# PP +"!# QQ + 2"!# QP= 212 + 0B� + 1CA = 2N �N + 12�dr �r � 12g� = = 2 PPP P + 4 QQP P= 12 � 0B� + 1CA = �12N(1 + 2N)93



Exerise The reader might �nd it amusing to verify that Csp(1;C) � Csl(2;C), asexpeted from the isomorphism sp(1;C) �= sl(2;C). Notie that Cso(3;C) is not equalto Csp(1;C) (or Csl(2;C)) beause their de�ning representations are not the same.9.6 Appendix: The Vassiliev knot invariants9.6.1 Taking the logarithmIn this appendix we will assume that F is a �eld of harateristi zero and that R isan irreduible representation of G.De�nition 2 Let A be the vetor spae of (in�nite) formal linear ombinations (withoeÆients in F) of (graph-) isomorphism types of losed diagrams having I = 1, (i.e.ontaining exatly one Wilson loop), with a pre-hosen base point on that loop. Foronveniene, we will exlude the trivial diagram from A. For example, here arethe six simplest generators of A: :In fat, A an be made into an algebra; the produt of A 2 A and B 2 A willessentially be the sum of all the possible ways of merging them into a single diagram:De�nition 3 Let A be a generator of A, and let a1; a2; : : : ; an be the list of R2Gverties in A, in the order they are enountered when one travels along the looponsistently with its orientation and beginning from the base point. Let B be anothergenerator of A, and de�ne b1; b2; : : : ; bk in the same way. Let P be the set of all possiblelinear orderings of n \a" symbols and m \b" symbols. For every P 2 P de�ne [AB℄Pto be the diagram obtained by marking a based Wilson loop with a's and b's followingtheir order in P , and onneting diagrams A and B (minus their respetive loops) tothat Wilson loop following the marks in the obvious way. Finally, de�neA �B = XP2P [AB℄P :For an example, see �gure 9.9.
+ +2 22=. Figure 9.9. Taking the produt in A94



Claim 4 The algebra A is assoiative and ommutative. 2Now let Z 2 A be Z = d+ Xgenerators of ACG(D) �D; (9.17)and let W 2 A be the formal logarithm of Z,W = logZ;given by the formal power series expansionW def= log d+ 1Xm=1 (�1)m+1 (PD CG(D) �D)mmdm : (9.18)Notie that the order of A � B is always bigger than that of A or B, and so everydiagram D appears in the above in�nite sum only �nitely many times, and hene Wis well de�ned.De�nition 4 De�ne C 0G(D) to be the oeÆient of D in W. Namely, de�ne it by theequation W = log d+XD C 0G(D) �D:Remark It is easy to hek that the weight of a diagram is independent of theposition of its base point, whih was introdued only for the sake of simplifyingde�nition 3. Therefore, base points will be suppressed from now on.De�nition 5 Let D be a generator of A. A `yli partition' of D will be a ylilyordered (that is, ordered up to a rotation) partition D = fD1; D2; : : : ; Dk(D)g of theset of all propagators of D into disjoint subsets, suh that for any propagator p 2 Di,all the propagators onneted to p by a G3 vertex will also be in Di. Given suha partition, we will denote by the same letter Di the generator of A obtained byreinserting the Wilson loop of D around Di.Claim 5 The weight C 0G(D) of a generator D of A is given in the following formula:C 0G(D) = Xyli partitions D (�1)k(D)+1dk(D) k(D)Yi=1 CG(Di): (9.19)Proof This is simply a sum over all the possible ways of writing D as a produt inA, with the oeÆients taken orretly as in (9.18). The fat that we are restritingour attention to \yli partitions" orresponds to the fator 1m in that equation. 295



Lemma 9.6.1 Let D be a generator of A whih an be deomposed (in the sense ofde�nition 5) into two parts suh that:1. The two parts an be separated from eah other by utting the Wilson loop of Dat just two points.2. At least one of the parts annot be deomposed any further.In this ase, C 0G(D) = 0: (9.20)(For an example, see �gure 9.10).

Figure 9.10. An example for a diagram with C 0G(D) = 0Proof Let D = A[B be a diagram deomposed into two non-empty separated partssuh that A annot be be deomposed any further. WriteC 0G(D) = Xyli partitions D 0(D) ; 0(D) = (�1)k(D)+1dk(D) k(D)Yi=1 CG(Di):We will prove (9.20) by �nding a �xed point free involution D ! �D of the set of allyli partitions of D for whih 0(�D) is always the negative of 0(D).Let D = fD1; D2; : : : ; Dk(D)g be a yli partition ofD. There are two possibilities:1. A is one of the Di's. In this ase, de�ne �D to be the yli partition obtainedby adjoining A to the omponent of D preeding it in D. It is lear thatk(�D) = k(D)� 1, and therefore using lemma 9.3.2 we �nd 0(�D) = �0(D).2. A is properly ontained in one of the Di's. We may assume that A is properlyontained in D1. De�ne �D = fD1 � A; A; D2; : : : ; Dk(D)g. It is lear thatk(�D) = k(D) + 1, and therefore using lemma 9.3.2 we �nd 0(�D) = �0(D).It is lear that � is a �xed point free involution. 2Remark It is easy to show that the seond requirement of the above lemma issuperuous | even if one of the parts of D is still deomposable one an always userelation STU to express that part as a sum of open diagrams, eah of whih is either`less deomposable' or `more separable' (i.e. an be separated in the sense of the �rstrequirement of the above lemma into two smaller parts).96



Claim 6 The relations (9.5) and (9.6) hold for the C 0G(D)'s as well:C 0G(�I) = C 0G( �H)� C 0G( �X); (9.21)C 0G( �S) = C 0G( �T )� C 0G( �U): (9.22)Proof (9.5) is a linear relation, and it is respeted by eah term in the sum (9.19).Therefore (9.21) holds. The same is true for (9.22), only that �T and �U have ylipartitions whih do not orrespond to yli partitions of �S | these are the ones inwhih the two propagators in T or in U of �gure 9.4 appear in di�erent omponents.There is natural orrespondene � between those exeptional partitions of �T and thoseof �U , and learly 0(�D) = 0(D) for every exeptional partition D of �T . The minussign in (9.22) then shows that these exeptional partitions an be disregarded. 2Remark The algebra struture of A an be used to de�ne an algebra struture onthe spae C of all weight systems. Let the generating funtion ZC of a weight systemC be as in (9.17), ZC = d+ Xgenerators of AC(D) �D;and for C1;2 2 C de�ne their produt C1 � C2 byZC1�C2 = ZC1 � ZC2 :The above proof is essentially a veri�ation of the fat that ZC1�C2 is indeed thegenerating funtion of a weight system that satis�es the relations IHX and STU .Example The following weights an be easily omputed using (9.19):C 0G( ) = rC 0G( ) = grC 0G( ) = 12grC 0G( ) = � 12grC 0G( ) = 12g2rC 0G( ) = 14g2r
C 0G( ) = � 14g2rC 0G( ) = 14g2rC 0G( ) = � 12g2rC 0G( ) = 14g2rC 0G( ) = 12g2rC 0G( ) = g2rIt is easy to hek that all the other diagrams of order � 3 have a vanishing C 0G.97



9.6.2 The Vassiliev knot invariantsIn [41℄ Vassiliev onsidered the spae M of all the possible embeddings of the ori-ented irle S1 in an oriented R3 as a subspae of the spae of all smooth mapsS1 ! R3, analyzed the possible singularities of suh maps, and using that infor-mation onstruted a �ltration of M and a spetral sequene that onverges to itsohomology. The onneted omponents of M orrespond simply to oriented knottypes, and therefore eah element of H0(M) is a knot invariant. Vassiliev then useshis topologial mahinery to partially ompute H0(M), and based on his mahinery,Birman and Lin [10℄ arrived at the following properties whih a numerial invariantVi of oriented knots that omes from the i's level of Vassiliev's �ltration has to satisfy:1. Vi has an extension (whih I will also denote by Vi) to an invariant of smoothimmersed irles, whih are allowed to have �nitely many transversal self-intersetion. We will all suh immersed irles embedded graphs.2. Vi( ) = 0.3. Overrossings, underrossings and self-intersetions are related by:Vi( )� Vi( ) = Vi( ): (9.23)This relation will be alled the ip relation. (As usual in knot theory, when wewrite , or , we think of them as parts of bigger graphs whih areidential outside of a small sphere, inside of whih they look as in the �gures).4. If a graph G has more than i self-intersetions, then Vi(G) = 0.The third and fourth properties taken together imply that if a graph G has exatlyi self-intersetion, than Vi(G) depends only on the abstrat graph underlying G, andnot on its embedding. Suh a graph will be alled saturated. A simple way of repre-senting suh a graph is by the diagram underlying it, whih is obtained by drawing airle in the plane orresponding to the parameterization of G, and onneting using adashed line every two points of that irle whih are identi�ed in G. For an example,see �gure 9.11.
�!Figure 9.11. The diagram orresponding to a saturated graph with i = 2Example A somewhat tautologial example is easily derived from the Conway poly-nomial [19, 31℄. Fix i > 0, let G an embedded graph with j self-intersetions, and let98



K1; : : : ; K2j to be the 2j possible resolutions of G | the 2j knots obtained by repla-ing eah of the j self-intersetions in G by either an overrossing or an underrossing.Let �(K)(z) be the Conway polynomial of a knot K, and de�neV �i (G) def= oeÆient of zi in 2jXm=1(�1)# of underrossings in Km � �(Km)(z): (9.24)I have already de�ned V �i for graphs, and there is nothing to hek for property 1.Property 2 is the fat that � � � = 1 is independent of z, and property 3 is trivialfrom the de�nition (9.24). By the de�ning relation of the Conway polynomial� � �� � � � = z � � � �and property 3, it follows thatV �i � � = V �i�1 � � ;and this proves that if j > i then V �i (G) = 0, as required in property 4. Using theresults of the previous setion one an hek that if G is a saturated graph and D isits orresponding diagram, then V �i (G) is equal to the oeÆient of N in Csl(N;C)(D).We saw that underlying the Vassiliev invariants there is an assignment of weightsto a ertain olletion of diagrams, D! Vi(D), just like the assignments CG and C 0G.The Vassiliev assignments are not arbitrary | they have to satisfy ertain onsistenyonditions: (These onditions were �rst written expliitly by Birman and Lin in [10℄)Claim 7 Whenever four diagrams S, E, W , and N di�er only as shown in �g-ure 9.12, their weights satisfyVi(S)� Vi(E) = �Vi(W ) + Vi(N): (9.25)
S NWEFigure 9.12. The diagrams S, E, W , and N . (The dotted ars represent partsof the diagrams that are not shown in the �gure. These parts are assumed tobe the same in the four diagrams)Proof Let SW be the almost saturated (i.e. having i � 1 self-intersetions) graphshown (partially) in �gure 9.13. Piees of the x and y axes near the origin serve asars in that graph, as well as a third line z0 parallel to the z axis but transversingthe x� y plane South-West of the origin. Let NE be the same, only with the third99



line z0 moved to transverse the x � y plane North-East of the origin. There are twoways to alulate Vi(NE) in terms of Vi(SW ) and the weights of saturated graphsusing the ip relation | by moving z0 from SW to NE along the two dotted pathsin �gure 9.13. The two ways must yield the same answer, and therefore the foursaturated graphs orresponding to z0 interseting the x and y axes South, East, Westand North of the origin have diagrams whose weights are related. With the signonvention of (9.23), this relation is seen to be (9.25). 2
z’

S

N

EW

y

x

Figure 9.13. The graph SW and the two ways of getting from it to NE. Notiethat z0 is perpendiular to the plane and therefore appears as a single dot.It is easy to see that the weight systems CG and C 0G satisfy the relation (9.25).Simply use the relations (9.6) and (9.22) in two di�erent ways (marked 1 and 2) onthe diagram:
1

2Claim 8 (Birman-Lin) If a diagram D ontains a dashed line whose endpoints onthe irle are not separated from eah other by an endpoint of any other line in D,then Vi(D) = 0.Proof An embedded graph G whose orresponding diagram is D would have a kink. By the ip relation (9.23), Vi(G) = Vi(Go)�Vi(Gu), where Go (Gu) is a versionof G in whih the kink was resolved to an overrossing (underrossing). But Go andGu are isotopi, and therefore Vi(G) = 0. 2It is a trivial onsequene of lemma 9.6.1 that The weights C 0G satisfy the relationin laim 8.We have just solved a problem posed by Birman and Lin in [10℄ | to �nd non-trivial solutions to the relations in the last two laims.100



Chapter 10Perturbation theory beyond twoloopsFollowing Witten [47℄, I will sketh here how we expet the perturbation theory ofthe Chern-Simons gauge theory to behave on a general three manifold and to higherorder in 1=k.In [42, 43℄ Witten used very di�erent tehniques than those presented here to�nd a omplete non-perturbative de�nition of the Chern-Simons gauge theory. Thepart of his solution that is relevant for making a omparison with the results provenhere was reviewed in the previous hapter, and that omparison showed a ompleteagreement between the two approahes. The solution involves three subtleties thatare hard to predit by just observing the de�nition of the theory in equation (1.2):1. Links have to be framed. Aording to Witten's solution W(M3;X ; k) annotbe de�ned as it is for a bare link X , but one also has to hoose a framing foreah of the omponents of X and only then W(M3;X ; k) an be de�ned. Itsde�nition will then depend on the hoie of the framing in a presribed manner.This point was explained in some more detail in the hapter 5.2. Three-manifolds have to be framed. Aording to Witten's solutionW(M3;X ; k)annot be de�ned as it is for a bare three-manifold M3, but one also has tohoose a framing for M3 | a hoie up to homotopy of a trivialization ofthe tangent bundle of M3, and only then W(M3;X ; k) an be de�ned [44, 3℄.(Atually, something a little less than a framing of M3 is enough [44, 3℄{it isenough, roughly speaking, to have a framing modulo torsion.) Its de�nition willthen depend on the hoie of the framing in a presribed manner. As we wereworking on a at R3 we have not enountered this subtlety in this paper. Wean onsider this subtlety and the previous one as ases of a broken symmetry| as framings do not at all appear in (1.2) it is trivialy invariant under a hangeof framing and this symmetry is broken in Witten's solution.3. Analytiity near k = 1 is lost.1 Naively one sees that as k ! �k in (1.2),1Some authors [26, 27℄ dispute this point, whih is usually referred to as \the shift in k". It is101



W(M3;X ; k) transforms to its omplex onjugate. This property ofW togetherwith analytiity near k =1 means that we expet the even powers in the 1=kasymptotis of W to be real and the odd ones to be imaginary. This propertyis lost in Witten's solution as an learly be seen from equations (6.1), (6.2),(6.3) and (6.5) in whih k always appears `shifted' by N .All of the above mentioned subtleties seem not to appear in a naive Feynman-diagrammati expansion of W, and the purpose of this hapter is to show how thesepoints probably do appear in perturbation theory after all.Formally writing down the sums of Feynman diagrams that we expet to yieldhigher three-manifold and link invariants and translating them into �nite dimensionalintegrals is routine and easy. It is also not hard to produe a formal invarianeproof for these integrals as explained in hapter 7, ignoring the analytial diÆultiesarising from the divergene of those integrals. We will see below how resolving theseanalytial diÆulties is likely to explain the three subtleties listed above.The origin of the above mentioned analytial diÆulties is the singularities Greens'funtions have near the diagonal. These get milder for higher order di�erential op-erators. This suggests trying to regularize (1.2) by adding higher order terms to theLagrangian preserving as muh symmetries as possible so as not to spoil the metriindependene argument of hapter 7. (Physiists all suh a proedure Pauli-Villarsregularization.) The main ingredient of this argument is BRST invariane (lemma3.1), and if we wish to preserve it we an only add terms that preserve gauge invari-ane. The only suh term of order two is the square of the norm of the urvature ofthe onnetion A and therefore we will make the replaementLtot ! Lregularized def= Ltot + �jjFAjj2:(In fat, to preserve the elliptiity of the quadrati part of Lregularized one also hasto hange the gauge-�xing term of Ltot and this fores hanging Q slightly. Makingthose hanges is easy and does not a�et the rest of our reasoning, so we will ignorethem.)Let as now pretend that Lregularized gives rise to a �nite perturbation theory. (A-tually, this is true exept for the role of a few low order subdiagrams.) What willremain of the invariane argument (7.6)?Lemma 3.1 and lemma 3.3 will still hold beause we have preserved gauge invari-ane, but as the additional term in Lregularized is metri dependent, lemma 3.2 will notbe true any more. Instead, the variation of Lregularized under gij ! gij + Ægij will begiven by ÆLregularized = Q� + �ÆjjFAjj2and therefore in the notations of (7.6) we will haveÆhOi� = �hOÆjjFAjj2i� (10.1)very likely that in the ontext of the regularization suggested below no hanges need to be made tothe assertions in this paper. 102



where the subsript � in h � i� is meant to remind us that we are taking expetationvalues with respet to a Lagrangian that depends on �. Of ourse, equation (10.1) (andequations (10.2)-(10.5) as well) should be understood as an equality of perturbativeasymptoti expansions, and its proof will be based on (7.6) as explained in hapter7. If hOi� had a limit as �! 0 and hOÆjjFAjj2i� was bounded as �! 0 we ould havetaken this limit and it would have been metri independent. One annot expet thisto be true. However, the divergenes in hOÆjjFAjj2i� for �! 0 originate from a veryde�nite type of ontribution to the Feynman diagrams, and by onsidering how suhdivergenes an originate, one an obtain results that are nearly as good as the naiveresults that would have held if there were no divergenes. In explaining this, we willonsider the basi ase O = 1.It is onvenient to onsider only the onneted Feynman diagrams and as is wellknown [36, 21, 29℄ the sum of those is just logh1i�. Divergenes in Feynman diagram-mati ontributions to logh1i� and toÆ (logh1i�) = �hÆjjFAjj2i�h1i� (10.2)ome from a region of integration in whih all integration points are separated bydistanes of order �. This means that the divergenes an be expanded in termsof loal di�erential geometri invariants { the metri, the urvature tensor, and itsovariant derivatives. This expansion is analogous to the short time expansion of theheat kernel. The most general divergent terms are of the formlogh1i� = 1�3V + 2� R + �nite terms (10.3)and hÆjjFAjj2i�h1i� = 1�4 ÆV + 2�2 ÆR + 3� ÆC + �nite terms: (10.4)Here 1, 2, and 3 are onstants (or more exatly funtions of k only, whih must beomputed order by order in perturbation theory, but do not depend on the partiularthree manifold or metri). Also, V is the volume of M3, R is the integral over M3 ofits salar urvature, C is the Chern-Simons number assoiated with the Levi-Civitaonnetion and ÆV , ÆR, ÆC are the variations of these quantities with respet togij ! gij + Ægij. The expansion (10.4) is determined by the following priniples. (i)The terms on the right hand side must be losed one forms on the spae of metris(sine the left hand side of the equation has this property.) (ii) The oeÆients ofthese losed one forms must be loal funtionals of the metri. What has been writtenon the right hand side of equation (10.4) is the most general expression with theseproperties. The general priniples do not determine 1; 2, and 3, whih from thispoint of view must simply be omputed order by order in perturbation theory.Equation (10.4) means that h1i� does not onverge as � ! 0 to a topologialinvariant. Indeed its variation (10.2) not only does not vanish as � ! 0; it diverges103



in this limit. If, however, we de�ne2Wrenormalized = h1irenormalized def= exp lim�!0�logh1i� � 1�3V � 2� R� 3C� (10.5)then (10.3) shows that Wrenormalized is �nite while (10.1) and (10.4) shows that it isan invariant. Here we see where the framing of M3 omes in | to de�ne C we must�rst pik a trivialization of the tangent bundle and so the invariants that we havejust produed depend on a hoie of suh a trivialization.Notie that ÆC, in equation (10.4) does not depend on the hoie of a framing,but C does. What is entering here is learly a sort of loal ohomology of the spaeof metris. The loal, losed one forms ÆV , ÆR appearing in (10.4) an be writtenas variations (exterior derivatives) of loal funtionals of the metri. But ÆC, thoughitself a loal funtional and a losed one form, annot be written as the variation ofa loal funtional. (If ÆC were itself not loal, it ould not arise in the intrinsi loalevaluation of Feynman diagrams that leads to equation (10.4).)Similarly, in the ase of a non-empty link X we do not expet that the higherorder Feynman diagrams will onverge to link invariants, but instead we expet themto onverge to something whose variation with respet to a deformation of X will beequal to some onstant multiple of the variation of the total torsion of X . (The torsionwill enter just as the Chern-Simons number C entered in the above disussion.) Thetotal torsion an then be subtrated out yielding link invariants at the prie of havingto introdue a framing for X | the total torsion an be de�ned only given suh aframing. This agrees with the results of Witten and with the results in hapter 3.Unfortunately, we were just pretending that the theory de�ned by Lregularized is�nite. In fat, it is not. One an �gure out how badly divergent the theories de�nedby Ltot and Lregularized are by taking a diagram with a spei�ed number of vertiesand ars, measuring the total degree of singularity of the ars and verties, andsubtrating the number of integrations that the verties indue. The result, the so-alled \super�ial degree of divergene" � of a diagram with EB external gauge lines,EF external ghost lines and L internal loops is�(Ltot) = 3� EB � 12EF ; �(Lregularized) = 4� L� EB � EF : (10.6)Clearly, the regularized theory is less divergent than the original one, but (10.6)shows that even in the regularized theory the diagrams with a small number of loopsand external lines will be divergent and as these diagrams appear as subdiagrams indiagrams with higher omplexity we annot just ignore them. One an hek that2This is onsistent with what is usually alled renormalization - it just orresponds to adding� 1�3 V � 2� R � 3C to the original Lagrangian as the limit � ! 0 is taken. In fat, the aboveparagraph an be summarized by saying that these three terms are the only possible loal BRSTinvariant additions to the Lagrangian whih are of the right dimension. Notie that all three termsdepend on the metri alone and not on the �elds, and therefore the n-point funtions of the theoryare not renormalized and thus no are needs to be taken of the renormalization of lower orderdiagrams when onsidering the renormalization of a �xed order in perturbation theory.104



even if higher terms than �jjFAjj2 are added to Ltot and even when onsidering theredution in the divergene that omes from gauge invariane3 one loop diagramswith one, two , or three external legs will remain divergent in the resulting theory.Yet, we believe that the following is true:Conjeture 1 (Witten, [47℄) The analysis in (10.3), (10.4), and (10.5) an be jus-ti�ed, and the resulting invariants Wrenormalized oinide with the expansion in powersof 1=k of the results in [42, 43℄.One-loop diagrams in the Chern-Simons theory have been regularized using �-funtion regularization in [42, 7℄ and in hapter 5 of this thesis, and using Pauli-Villars regularization in [2℄. In both these regularizations the `shift in k' is observedonsistently with the above onjeture.

3Q� = �, and therefore h�(x)�(y)i = 0. This together with the struture of the �B propagatorproves that the amputated two-point funtion is given by ?LdL of a (1; 1)-form whose onvergeneproperties are by one degree better. For a similar example, see e.g. [12, pp. 299-300℄.105
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