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2 DROR BAR-NATAN AND STAVROS GAROUFALIDIS3. The Conway polynomial 123.1. The Conway weight system3.2. The 2T relation3.3. The intersection graph and the intersection matrix3.4. The logarithm of the Conway weight system4. Understanding WJJ 184.1. Lie algebras and weight systems4.2. Understanding B̂4.3. Understanding WJJ4.4. The logarithm of the JJ weight system5. The MMR conjecture for general semi-simple Lie algebras 245.1. Lie-algebraic preliminaries5.2. Understanding B̂5.3. Understanding WJJ;g5.4. Proof of lemma 5.16. Odds and ends 286.1. Immanants and the Conway polynomial6.2. A curious formula for the weight system of the colored Jones polynomial6.3. A further generalizationReferences 321. Introduction1.1. The conjecture. In this paper, we will mostly be concerned with proving andexplaining some of the motivation for the following conjecture, due to Melvin andMorton [MM, Mo]:Conjecture 1. Let Ĵsl(2);�(K) 2 Q(q) be the \framing independent colored Jonespolynomial" of the knot K, i.e., the framing independent Reshetikhin-Turaev invariant1[RT] of K colored by the (d = �+ 1)-dimensional representation of sl(2). Let ~ be aformal parameter, let q = e~, and let [d] denote the \quantum integer d":[d] = qd=2 � q�d=2q1=2 � q�1=2 = ed~=2 � e�d~=2e~=2 � e�~=2 :1I.e., Ĵ is obtained from the framing-dependent J either by multiplication by q�C�writhe where Cis the quadratic Casimir number of V�, or by evaluating J on K with its zero framing. We take themetric on sl(2) to be the trace in the 2-dimensional representation.



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 3Then, expanding Ĵ=[d] in powers of d and ~ (this is possible by [MM]),Ĵsl(2);�(K)(e~)[d] = Xj;m�0 ajm(K)dj~m;we have:(1) \Above diagonal" coe�cients vanish: ajm(K) = 0 if j > m.(2) \On diagonal" coe�cients give the inverse of the Alexander-Conway polyno-mial: MM(K)(~) � A(K)(e~) = 1;(1)where A(q) is the Alexander-Conway polynomial (in its \Conway" normaliza-tion, as in example 2.8) and MM is de�ned byMM(K)(~) = 1Xm=0 amm(K)~m:Notice that the colored Jones polynomial of a knot can be read from the Jonespolynomials of cables of that knot (see, e.g. [MS]), and thus the above conjectureimplies that the Alexander polynomial can be computed from the Jones polynomialand cabling operations.Melvin and Morton arrived at (the rather unexpected) conjecture 1 after noticingit in some special cases, and by noticing that the two sides of (1) seem to behave inthe same way when acted on by the `Adams operations' of [B-N2]. In his visit toCambridge in November 1993, we informed L. Rozansky of the conjecture, and hewas able [Ro1] to �nd a non-rigorous path integral \proof" of it, which easily leadsto a generalization to other Lie algebras, as shown in section 5. At the end of thisintroduction we will brie
y review the main ideas of Rozansky's work on the MMRconjecture.1.2. Preliminaries. Before we can sketch our proof of the MMR conjecture, let usrecall some facts about Vassiliev invariants and chord diagrams, which are the maintools used in the proof. We follow the notation of [B-N2]; see also [Va1, Va2, BL, Ko1].A Vassiliev invariant of type m is a knot invariant V which vanishes whenever it isevaluated on a knot with more than m double points, where the de�nition of V isextended to knots with double points via the formulaV � � = V � �� V � � :The algebra V of all Vassiliev invariants (with values in some �xed ring) is �ltered,with the type m subspace FmV containing all type m Vassiliev invariants. Theassociated graded space of V is isomorphic to the space W of all weight systems.A degree m weight system is a homogeneous linear functional of degree m on the



4 DROR BAR-NATAN AND STAVROS GAROUFALIDISgraded vector space Ar of chord diagrams like in �gure 1 divided by the 4T andframing independence relations explained in �gures 2 and 3.Figure 1. A chord diagram:	 	 	 	 		 �=�=�Figure 2. To get the 4T relations, add an arbitrary number of chords in arbitrary positions(only avoiding the short intervals marked by a `no-entry' sign 	) to all six diagrams in exactlythe same way.Figure 3. The framing independence relation: any dia-gram containing a chord whose endpoints are not separatedby the endpoints of other chords is equal to 0. = 0Ar is graded by the number of chords in a chord diagram. It is a commutative andco-commutative Hopf algebra with multiplication de�ned by juxtaposition, and withco-multiplication � de�ned as the sum of all possible ways of `splitting' a diagram.The co-algebra structure of Ar de�nes an algebra structure on W. The Hopf algebraA is de�ned in the same way as Ar, only without imposing the framing independencerelation.There are natural maps Wm : FmV ! GmW = GmAr?, where Gm obj denotes thedegree m piece of a graded object obj. For a type m Vassiliev invariant V it is naturalto think ofWm(V ) as \the m'th derivative of V ". The maps Wm are compatible withthe products of the spaces involved. Similar de�nitions can be made for framed knots,and the image of the corresponding map Wm will be GmA?.1.3. Plan of the proof. It is well known [Gou, B-N1, B-N2, BL, Lin] that thecoe�cients of both the Conway and the Jones polynomials are Vassiliev invariants.Normally, Vassiliev invariants are not determined by their weight systems. However,in section 2 we explain (following Kassel [Kas] and Le and Murakami [LM]) thatwhen an invariant comes (in an appropriate sense) from a Lie algebra, it is in factdetermined by its weight system. As this is the case for all the invariants appearingin conjecture 1 (or rather, in the version of it that we actually prove, theorem 1), itis enough to prove conjecture 1 (that is, theorem 1) on the level of weight systems.To do this, we analyze the weight systems of the Conway polynomial and of theinvariant MM. In section 3 we analyze the weight system WC of the Conway poly-nomial. We �nd a simple characterization (theorem 2) of it, and then we use thischaracterization to show that WC(D) is the determinant of the intersection matrixIM(D) (de�nition 3.4) of the chord diagram D. In section 4 we go through a rather



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 5complicated analysis of the weight system of MM, �nding that it is given by thepermanent of the intersection matrix. We then conclude the proof of the conjectureby showing that, in the sense of weight systems,log det IM+ log per IM = 0;(2)and thus the two weight systems are inverses of each other. Equation (2) is proven inthe ends of sections 3 and 4, where the logarithm of the two weight systems involvedare given in terms of explicit formulas.In section 5 we use similar techniques to generalize conjecture 1 to arbitrary semi-simple Lie algebras. In section 6.1 we discuss a curious relation between immanantsand the algebra generated by the coe�cients of the Conway polynomial, in section 6.2we sketch how the techniques of section 4 can be used to get a formula for theweight system of the colored Jones polynomial, and in section 6.3 we conjecture ageneralization of conjecture 1 beyond the realm of Lie algebras.As noted before, we actually prove a variation of conjecture 1 in which the nor-malizations are somewhat `better' from the point of view of sections 2 and 5:Theorem 1. Expanding Ĵ=d in powers of � = d� 1 and ~,Ĵsl(2);�(K)(e~)d = Xj;m�0 bjm(K)�j~m;(3)we have:(1) \Above diagonal" coe�cients vanish: bjm(K) = 0 if j > m.(2) Up to a constant, \on diagonal" coe�cients give the inverse of the Alexander-Conway polynomial:JJ(K)(~) � ~e~=2 � e�~=2A(K)(e~) = 1;(4)where JJ is de�ned by JJ(K)(~) = 1Xm=0 bmm(K)~m:Claim 1.1. Conjecture 1 and theorem 1 are equivalent.Proof. Let b0jm be the coe�cients of the expansion of Ĵ=d in powers of d and ~. Itis clear that theorem 1 restated with b0jm replacing bjm is equivalent to the originaltheorem 1. We have:X ajmdj~m = Ĵ[d] = d[d] � Ĵd = e~=2 � e�~=2~ � d~ed~=2 � e�d~=2 �X b0jmdj~m(5)The �rst factor in the right hand side of (5) is a power series in ~ alone in which thecoe�cient of ~0 is 1, and thus it (or its inverse) cannot take below- or on-diagonal



6 DROR BAR-NATAN AND STAVROS GAROUFALIDISterms to go above the diagonal, and it does not change the coe�cients on the diagonal.The second factor lives entirely on the diagonal and thus the �rst part of conjecture 1is equivalent to the �rst part of theorem 1.Restricted to the diagonal, (5) becomesX ammdm~m = d~ed~=2 � e�d~=2 �X b0mmdm~m:At d = 1, we get MM = ~e~=2 � e�~=2 � JJ;and it is clear that (1) and (4) are equivalent.1.4. Rozansky's work. Rozansky arrives at the MMR conjecture using the pathintegral interpretation of the Jones polynomial given in Witten's seminal paper [Wi].Needless to say, path integrals have not yet been mathematically de�ned, but they canbe used as a rich source of motivation. In our case they do in fact lead to the correctconjecture, though our proof of the conjecture is not a translation of the path integralargument to rigorous math, and we don't know how to translate the path integralargument into rigorous math. For the convenience of the reader we outline Rozansky'sargument below. The reader may �nd our account somewhat more readable thanRozansky's [Ro1], as we have isolated the parts relevant to conjecture 1 from his(much broader) paper, and skipped some of the details. We heartily recommendconsulting with [Ro1] (as well as [Ro2, Ro3]) for the missing details and for manyother related results.Let us recall Witten's interpretation of the Jones polynomial. For a framed, ori-ented knot K in S3, a choice V� of an irreducible SU(2) representation of highestweight � and an integer k, Witten introduces the following de�nition:Z(K; V�; k) = ZADAe2�ikCS(A)OK;V�(A)where the (ill de�ned) path integral is over the space A of all SU(2) connections onthe trivial SU(2) bundle over S3, CS : A! R=Z is the Chern-Simons actionCS(A) = 18�2 ZS3 tr(A ^ dA+ 23A ^ A ^ A);and OK;V� : A ! R is the trace in the representation V� of the holonomy of theconnection A along the knot K.Using non-rigorous quantum �eld theory reasoning, Witten computed Z(K; V�; k)and found thatZ(K; V�; k) = s 2k + 2 sin� �k + 2�Jsl(2);V�(K)�exp 2�ik + 2� ;where Jsl(2);V� is the framing dependent colored Jones polynomial.



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 7Now take a rational number 0 < a � 1 (so that ka is a weight for many largeintegers k). Following Rozansky [Ro1], the path integral Z(K; Vka; k) (for such k)can be split into an integral over connections on a tubular neighborhood Tub(K)of the knot K and over connections on the complement S3 n Tub(K) with certainboundary conditions on the boundary T 2 = @ Tub(K), followed by an integral overthese boundary conditions. With the appropriate boundary conditions of [EMSS],the integral over the connections on Tub(K) can be restricted to an integral over
at connections, and on those it is proportional to �(I1 � e2�ia) independently of k,where I1 is the holonomy along a meridian of K in @ Tub(K) and e2�ia is consideredin SU(2) in the usual way. ThereforeZ(K; Vka; k) = ZA[S3nTub(K)]a DAe2�ikCS0(A)(6)where the integral is over the connections on S3 nTub(K) with holonomy e2�ia alongany meridian of K. Here CS0 is a modi�ed Chern-Simons action dictated by theboundary conditions.Rozansky now applies stationary phase approximation to calculate the large k limitof Z(K; Vka; k). The critical points of CS0 are the 
at SU(2) connections on the knotcomplement with holonomy e2�ia around a meridian. Modulo gauge equivalence, themoduli space of such connections consists of only one connection Aa, for su�cientlysmall values of a.By the stationary phase approximation, the leading order term of the path integralis proportional to 1p8�  4�2k !12(h0(Aa)�h1(Aa))q�RS(Aa) � e2�ikCS0(Aa)where hj(Aa) is the dimension of the j'th cohomology of S3nTub(K) with coe�cientstwisted by Aa, and �RS(Aa) is the SU(2) Ray-Singer torsion of S3nTub(K) twisted byAa. Furthermore one can check that h1(Aa) = 0, h0(Aa) = 1, and CS0(Aa) = 0. TheRay-Singer torsion splits into three factors, one for each algebra component of SU(2).The torsion in the Cartan direction is 1, and in the remaining two directions thetorsions are equal, and each contributes the square root of the U(1) � SU(2) torsionusing the representation of �1(S3 n Tub(K)) sending the meridian to e2�ia 2 U(1).Summarizing, we gets 2k + 2 sin� �k + 2�Jsl(2);Vka(K)�exp 2�ik + 2� �k!1 1p2k�RS(S3 n Tub(K); e2�ia):Cheeger [Ch] and M�uller [M�u] proved that the Ray-Singer torsion is equal to theReidemeister torsion, which by Milnor [Mi] and Turaev [Tu] was shown to be pro-portional to the inverse of the Alexander polynomial A(K) of K, evaluated at e2�ia.



8 DROR BAR-NATAN AND STAVROS GAROUFALIDISWith the correct constant of proportionality (2 sin�a) in place and ignoring factorsthat converge to 1 as k!1, we get�kJsl(2);Vka(K)�exp 2�ik � �!k!1 sin �aA(K)(e2�ia) :See [Ro1, (2.8) and following paragraph] for an explanation why the J computed hereis `in zero framing'. Thus J = Ĵ and�a Xj;m�0 bjm(K)(2�i)majkj�m �!k!1 sin �aA(K)(e2�ia) :This proves (on the level of rigor of path integrals) that bjm = 0 if j �m > 0, and,taking a = ~=2�i and disregarding all strictly positive powers of k, it also provestheorem 1 (on the same level of rigor).1.5. Acknowledgement. We wish to thank N. Bergeron, P. Diaconis, C. Kassel,R. C. Kirby, H. R. Morton, L. Rozansky, S. Sawin, C. H. Taubes and V. G. Turaev fortheir many useful comments. Especially we wish to thank D. Kazhdan for his criticalreading and P. M. Melvin for suggesting exercise 3.9 and the use of permanents.2. A reduction to weight systemsLet us start with some generalities that (sometimes) allow us to deduce equalityof invariants from the equality of their weight systems. In this section, we mostlyinterpret and adapt to our needs the deep results of Kassel [Kas] and Le and Mu-rakami [LM], who followed Kohno [Koh] and Drinfel'd [Dr1, Dr2].2.1. Canonical Vassiliev invariants. A fundamental (and not too surprising) re-sult in the theory of Vassiliev invariants is that every degree m weight system comesfrom a type m Vassiliev invariant, and that the resulting Vassiliev invariant is well-de�ned up to Vassiliev invariants of lower types (see e.g. [Ko1] and [B-N2]); in otherwords, the sequence0 �! Fm�1V �! FmV �! GmAr? �! 0;(7)is exact. The standard way of proving this fact is to construct a splitting Vm :GmAr? ! FmV for each m. These splittings can be assembled together in a uniqueway to form a universal Vassiliev invariant Z with values in the graded completionof Ar, satisfying Vm(W ) =W � Z(8)for each degree m weight system W . In fact, usually Z is �rst constructed, and onlythen the splittings Vm are de�ned from it via (8).A-priori, there appears to be no knot theoretic reason to expect that there wouldbe a preferred choice for the splittings Vm, or, equivalently, for Z. However, rather



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 9surprisingly, it seems that such a preferred choice for Z does exist. Indeed, for reasonsdiscovered by Drinfel'd [Dr1, Dr2] and elucidated further by Kassel [Kas] and Le andMurakami [LM], many of the known constructions [B-N3, Ca, Kas, Ko1, LM] of auniversal Vassiliev invariant give the same (hard to compute but rather well behaved)answer.2 Let us call this preferred universal Vassiliev invariant ZK.De�nition 2.1. A canonical type m Vassiliev invariant V is a type m Vassilievinvariant lying in the image of the splitting of (7) de�ned by ZK. In a simplerlanguage, let ZKm be the projection of ZK into GmAr. V is a canonical type mVassiliev invariant i� V = Wm(V ) � ZKm:De�nition 2.2. Let ~ be a formal parameter. A Vassiliev power series is an elementV 2 1Xm=0(FmV)~m:That is to say, it is a power series V = V0 + V1~ + : : : in which the coe�cient Vmof ~m is a Vassiliev invariant of type m. The weight system W (V ) of V will be thesum of the weight systems of the coe�cients of V (which makes sense in the gradedcompletion �W of W): W (V ) = 1Xm=0Wm(Vm) 2 �W :De�nition 2.3. A Vassiliev power series V = PVm~m is called canonical if each ofits coe�cients Vm is canonical. Equivalently, if ~deg is the operator that multipliesevery degree m diagram by ~m and ZK~ def= ~deg � ZK, then V is canonical i�V =W (V ) � ZK~ :Obviously, two canonical Vassiliev power series (or canonical Vassiliev invariants)are equal i� their weight systems are equal. Sometimes, as is the case in this paper,it is easier to verify equality of weight systems and then use it to deduce the equalityof the corresponding canonical invariants rather than proving the equality of theinvariants directly.2.2. Examples of canonical Vassiliev power series. In this section we will es-tablish, through a sequence of examples, that the invariants appearing in theorem 1are canonical.2[B-N2, Pi2] di�er only by a normalization, and the incomplete perturbative Chern-Simons con-structions [AS1, AS2, B-N1, Ko2] are conjectured to also give the same answer.



10 DROR BAR-NATAN AND STAVROS GAROUFALIDISExample 2.4. The type 0 invariant 1, whose value on all knots (having no doublepoints) is 1, is both a canonical type 0 Vassiliev invariant and a canonical Vassilievpower series. Its weight system � is de�ned by�(D) = 8<:1 if degD = 0 (namely, if D = is the empty diagram),0 otherwise.Kassel [Kas, theorem 8.3, chapter XX] and Le and Murakami [LM, theorem 10],using the techniques of Kohno [Koh] and Drinfel'd [Dr1, Dr2], have shown that theReshetikhin-Turaev [RT] invariant associated with a semi-simple Lie algebra g anda representation V (and a metric t on g) is a canonical Vassiliev power series whenevaluated at q = e~ and expanded in powers of ~.3 (Both the framed version Jg;Vand unframed version Ĵg;V are canonical; for the framed version, A has to replaceAr in the de�nitions of this section. For the unframed version (at least when V isirreducible), simply notice that it can always be obtained from the framed versionby multiplying the Lie algebra by an Abelian Lie algebra). We will use this crucialresult twice, in example 2.5 and in example 2.6.Example 2.5. By [Kas, LM], the invariant Ĵsl(2);� of conjecture 1 is a canonical Vas-siliev power series, and hence the invariants bjm of theorem 1 are canonical of typem, and JJ is a canonical Vassiliev power series. The invariants ajm and MM are notcanonical as [d] depends on ~.Example 2.6. The HOMFLY polynomial, de�ned by the relationseN~=2H � �� e�N~=2H � � = (e~=2 � e�~=2)H � � ;H (c-component unlink) =  eN~=2 � e�N~=2e~=2 � e�~=2 !c ;is a canonical Vassiliev power series, as it is the Reshetikhin-Turaev invariant asso-ciated with the Lie algebra sl(N) in its de�ning representation.Example 2.7. Divide the HOMFLY polynomial by N and take the limit N ! 0. Thelimit exists because the limit limN!0 eN~=2 � e�N~=2N = ~3Thus they gave an a�rmative answer to problem 4.9 of [B-N2].



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 11exists. The result is a canonical Vassiliev power series ~C satisfying~C � �� ~C � � = (e~=2 � e�~=2) ~C � � ;(9) ~C (c-component unlink) = 8<: ~e~=2�e�~=2 if c = 10 otherwise.Recall that the Conway polynomial C [Co, Kau] (considered as a polynomial in ~) isde�ned by the relations:C � � def= C � �� C � � = ~C � � ;(10) C (c-component unlink) = 8<:1 if c = 10 otherwise.Comparing (9) and (10), we see that the Conway polynomial itself is not a canonicalVassiliev power series, but its renormalized reparametrized version~C(~) = ~e~=2 � e�~=2C(e~=2 � e�~=2)is a canonical Vassiliev power series.Example 2.8. The Alexander polynomial, de�ned by A(z) = C(z1=2 � z�1=2), is nota canonical Vassiliev power series, but it becomes canonical when multiplied by~e~=2�e�~=2 and evaluated at z = e~ (as this product is ~C).2.3. Products. The product (in the natural sense) of two Vassiliev power series isa Vassiliev power series, and the weight system of such a product is the product ofthe weight systems of the factors.Proposition 2.9. The product of any two canonical Vassiliev power series is a canon-ical Vassiliev power series.Proof. It can be shown that the universal Vassiliev invariant ZK is `group-like'; itsatis�es �ZK(K) = ZK(K)
ZK(K) for any knot K. This property is an immediateconsequence of the Kontsevich integral formula for ZK described in [Ko1, B-N2]4.4A similar but di�erent statement is [LM, theorem 4].



12 DROR BAR-NATAN AND STAVROS GAROUFALIDISNow, if V1;2 are canonical, then(W (V1V2) � ZK~ )(K) = (W (V1)W (V2))(ZK~ (K)) [B-N2, exercise 3.10]= (W (V1)
W (V2))(�ZK~ (K)) Ar is a Hopf algebra= (W (V1)
W (V2))(ZK~ (K)
 ZK~ (K)) ZK is group-like= (W (V1) � ZK~ )(K)(W (V2) � ZK~ )(K)= V1(K)V2(K);and thus V1 � V2 is also canonical.It follows from examples 2.4, 2.5, and 2.8 and from proposition 2.9 that both sidesof equation (4) are canonical Vassiliev power series, and thus it is enough to prove (4)(as well as the vanishing of bjm for j > m) on the level of weight systems. That is,we need to show that WJJ �WC = �;(11)where WJJ is the weight system of JJ, WC is the weight system of ~C (which is equalto the weight system of C), and � is as in example 2.4.3. The Conway polynomial3.1. The Conway weight system. The de�ning relations (10) of C, become thefollowing relations on the level of WC :WC � � =WC  ! and WC (c cycles) = 8<:1 if c = 00 otherwise.In other words, to compute WC of a given chord diagram D, \thicken" all chords inD into bands, and count the number of cycles in the resulting diagram; if it is greaterthan 0, WC(D) is 0, and otherwise it is 1. For example,� def= �! �! 1 cycle �! 0;X def= �! �! 0 cycles �! 1:These two examples can be combined as in the following de�nition:De�nition 3.1. An (m1; m2)-caravan or simply a caravan is the chord diagram�m1Xm2 made of m1 single-hump-camels and m2 double-hump-camels, as in �gure 4.It is a chord diagram of degree m = m1 + 2m2.



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 13Figure 4. An (m1;m2)-caravan: : : : : : :m1 m2Proposition 3.2.WC (an (m1; m2)-caravan) = 8<:1 if m1 = 00 otherwise.3.2. The 2T relation. It is clear that WC is invariant under the \2T" or \slide"relations shown in �gure 5. Indeed, after thickening the chords l and r, it is clearthat it is possible to `slide' l over r as in �gure 6 without changing the topology ofthe resulting diagram.2T 0 : W  rl: : : : : :: : :: : : 	 ! =W 0@ l: : : : : : : : :r : : : 	 1A2T 00 : W 0@ l: : : : : :: : : : : :	r 1A =W 0@ l: : : : : :: : : r : : :	 1AFigure 5. The 2T relations. In these �gures, ellipsis denote possible other chords, whilea `no-entry' sign (	) means that no chords can end in the corresponding interval. Forde�niteness, we drew the `far' end of the chord l left of the chord r, but it can be anywhereelse in the diagram. rl: : : : : : : : : : : : : : : : : :r	l Figure 6. Deriving the relation 2T 0 by sliding l over r.Let GmD be the set of all chord diagrams of degree m. The following theorem5 isa characterization of the Conway weight system:Theorem 2. If a map W : GmD ! Z satis�es the 2T relations and the same `initialcondition' as in proposition 3.2, then it is the Conway weight system WC .Proof. It is enough to show that modulo 2T relations, every chord diagram D isequivalent to a caravan. If D has a pair of intersecting chords r1 and r2, thicken bothof them and slide all other chords out and to the left as in �gure 7. The result isthat a double-hump-camel (an X diagram) is factored out. Use induction to simplify5P. M. Melvin commented that this is simply the classi�cation theorem for surfaces presented as`a box with handles'.



14 DROR BAR-NATAN AND STAVROS GAROUFALIDISthe rest. If D has no pairs of intersecting chords, than it must have a `small' chordr, a chord whose endpoints are not separated by the endpoints of any other chords.Thicken r, and slide all other chords over it and to the left. The result is that asingle-hump-camel (a � diagram) is factored out. Again, use induction to simplifythe rest. r1 r2
Figure 7. Factoring out a double-hump-camel. Slide all other chords out following the pathmarked by a dotted line.Exercise 3.3. Show that the space of maps W : GmD ! Z satisfying the 2T relationsis spanned by the coe�cients of various powers of N in D 7! Wgl(N);VN (D), whereWgl(N);VN (D) is the weight assigned to D using the Lie algebra gl(N) in its de�ningrepresentation VN as in section 4.1 below. Show that such a map that also satis�esthe framing independence relations has to be proportional to WC .3.3. The intersection graph and the intersection matrix. In this section, wewill use theorem 2 to �nd a determinant formula for WC .De�nition 3.4. (See also [CDL1, CDL2, CDL3]) Let D be a degree m chord dia-gram. The labeled intersection graph LIG(D) of D will be the graph whose verticesare the chords of D, numbered from 1 to m by the order in which they appear alongthe `base line' of D from left to right, and in which two vertices are connected by anedge i� the corresponding two chords in D intersect. The intersection matrix IM(D)of D is the anti-symmetric variant of the m�m adjacency matrix of LIG(D) de�nedby IM(D)ij = 8><>:sign(i� j) if chords i and j of D intersect (where chordsof D are numbered from left to right),0 otherwise.Example 3.5.D = 1 2 3 4 ; LIG(D) = 31 24 ; IM(D) = 0BBB@ 0 �1 �1 01 0 0 �11 0 0 �10 1 1 0 1CCCA :



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 15Example 3.6. The labeled intersection graph of an (m1; m2)-caravan is the discon-nected union of m1 single vertices and m2 graphs like ������. Its intersection matrixis block diagonal, with the blocks on the diagonal being m1 copies of the 1� 1 zeromatrix and m2 copies of the matrix  0 �11 0 !.Exercise 3.7. Show that if the labeled intersection graph of a chord diagram is con-nected, then the diagram is determined by its intersection matrix. Deduce that ingeneral the intersection matrix determines the class of the diagram modulo 4T rela-tions.Hint 3.8. Start from a connected labeled intersection graph of a chord diagram, re-move one vertex so that the resulting graph is still connected (this is possible!), useinduction, and show that there is a unique way to re-install the missing chord.In the light of the above exercise, it is not surprising that one can �nd a formula forthe weight system of the Conway polynomial in terms of the intersection matrix, asfound in the theorem below. A mild generalization of this theorem is in section 6.1.Even though the exercise suggests it should be possible, we have not been able to�nd nice formulae for other weight systems (beyond those of section 6.1) in terms ofthe intersection matrix.Theorem 3. For any chord diagram D,WC(D) = det IM(D)Proof. Let W : GmD ! Z be de�ned by W (D) = det IM(D). By theorem 2, itis enough to prove that W satis�es the 2T relations and the initial conditions ofproposition 3.2. The latter fact is trivial; simply compute the determinant of theblock diagonal matrix in example 3.6. Let us now prove that W satis�es the 2Trelations. First, notice that W is `independent of the basepoint of D'. That is, if thediagram D2 is obtained from the diagram D1 by moving the left-most vertex of D1to the right end, j+1D1 = D2 = j1 : : : : : : : : : : : : ;then W (D1) = W (D2). Indeed, except for the labeling the intersection graphs of D1andD2 are the same, and so IM(D2) is obtained from IM(D1) by reversing all the signsin the �rst row of IM(D1), re-installing it as row number j for some j, and then doingexactly the same to the �rst column of IM(D1). The e�ect of the row operations is tomultiply det IM(D1) by some sign, and then the column operations multiply by thesame sign once again. The end result is that det IM(D1) = det IM(D2), as required.



16 DROR BAR-NATAN AND STAVROS GAROUFALIDISBy repeating the above process a few times, we may assume that the chord l inthe 2T 0 relation is chord number 1, and so we need to prove that W (D1) = W (D2)where D1 (D2) is the diagram obtained by ignoring l2 (l1) in the �gure: : : : : :l1 l21 j r: : : 		 :In this �gure, it is clear that any other chord can intersect either none of the chordsl1, l1, and r, or exactly two of them. Using this and some case-checking, it is clearthat IM(D2) is obtained from IM(D1) by adding its jth rows to its �rst row, and thendoing the same column operation. Therefore det IM(D1) = det IM(D2), as required.The same argument also proves the 2T 00 relation.In the following two exercises, we outline two alternative proofs of theorem 3:Exercise 3.9. (Melvin) Let F be the surface obtained by thickening a chord diagramD (that is, thicken all chords and the base line), and let @F be its boundary. WC(D) =1 if H0(@F ) = Z, and otherwise, WC(D) = 0. Now consider the following long exactsequence: H1(F ) p?�! H1(F; @F ) ��! H0(@F ) i?�! H0(F ) = Z �! 0???y 
 �Poincar�eduality �H1(F )We are interested in knowing when H0(@F ) = Z, which is when p? is an epimorphism,which is when 
�p? is an epimorphism. Show that in the basis suggested by the chordsof D, 
 � p? is given by the matrix IM(D), and use this to deduce theorem 3. (Wewish to thank C. Kassel for reminding us that the determinant of an anti-symmetricmatrix is always non-negative).Exercise 3.10. Deduce theorem 3 from the fact (see e.g. [Kau, chapter 7]) that theAlexander polynomial of a knot K is given by det(z�1� � z�T ), where � is Seifertpairing matrix for some Seifert surface for K, and �T is its transpose.Hint 3.11. First, take the `pre-Seifert surface' of a speci�c singular embedding of achord diagram as in: enlargedbelow



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 17Then resolve all the double points to overcrossings and undercrossings, while extend-ing the `pre-Seifert surface' to a Seifert surface as in:�! �It is now easy to compute the 2m � 2m Seifert pairing matrices of the resultingsurfaces in terms of the m�m intersection matrix of the original chord diagram andthe over/under choices at the double points.3.4. The logarithm of the Conway weight system. Expanding det IM(D) asa sum over permutations, we only need to consider those permutations of chords(D)which map any chord to a di�erent chord intersecting it. Such permutations can beconsidered as `walks' on LIG(D). Let us introduce the relevant terminology:De�nition 3.12. A Hamilton cycle in LIG(D) is a directed cycle H of length > 1in LIG(D) containing no repeated vertices. For example, the graph in example 3.5has two Hamilton cycles of length 4, four of length 2, and none of any other length.The descent d(H) of a Hamilton cycle H is the number of label-decreases along thecycle. For example, the cycle 1 ! 2 ! 4 ?! 3 ?! 1 in example 3.5 has descent 2,corresponding to the two stared label-decreases. A cycle decompositions H = [�H�is a cover of the vertex set of LIG(D) by a collection of unordered disjoint Hamiltoncycle, and the descent d(H) of H is de�ned by d(H) = P d(H�).Expanding det IM(D), and taking account of signs, we �nd thatWC(D) = XH=[� �H�(�1)�H (�1)d(H);(12)where �H is the permutation of the vertices of LIG(D) underlying H. Notice that ifHcontains a cycle of odd length, then (�1)d(H) is odd under reversing the orientation ofthat cycle, while (�1)�H does not change under that operation. Therefore, summationcan be restricted to cycle decompositions containing no odd cycles. For such cycledecompositions, (�1)�H = (�1)jHj, where jHj is the number of cycles in H, and thusWC(D) = XH=[� �H�(�1)jHj(�1)d(H):(13)Recall (see e.g. [B-N2]) that the algebra structure on weight systems is de�ned by(W1 �W2)(D) = XsplittingsD=D1[� D2 W1(D1) �W2(D2):(14)



18 DROR BAR-NATAN AND STAVROS GAROUFALIDISUsing the power series expansion of the exponential function, we �nd that(expW )(D) = Xunordered splittingsD=[� D� Y� W (D�);and if W depends on D only through LIG(D), we �nd(expW )(D) = Xunordered splittingsLIG(D)=[� G� Y� W (G�);using the obvious de�nition for a splitting of a labeled graph.Proposition 3.13. (logWC)(D) = �XH (�1)d(H);where the sum extends over all Hamilton cycles H covering all the vertices of LIG(D)(i.e., all cycle decompositions into a single cycle).Proof. Simply exponentiate both sides of this equation and use the discussion in thepreceeding paragraph to recover (13).4. Understanding WJJThe purpose of this section is to understand WJJ, the weight system underlyingthe invariant JJ. The invariant JJ, as de�ned in the statement of theorem 1, has todo with the Lie algebra sl(2). So let us start by recalling the relation between Liealgebras and weight systems.4.1. Lie algebras and weight systems. Let g be a Lie algebra over some ground�eld F, let t be a metric (ad-invariant symmetric non-degenerate quadratic form) ong, and let V be a representation of g. Given this information, one can construct aweight system [B-N1, B-N2]. Let us recall how this is done.Choose some basis fgagdimga=1 of g. Let (tab) be the matrix corresponding to themetric t in the basis fgag; that is, tab = t(ga; gb). Let the matrix (tab) be the inverseof the matrix (tab), and let B 2 (V ? 
 V )
 (V ? 
 V ) = End(V 
 V ) be given byB = dimgXa;b=1 tabga 
 gb:We will represent B symbolically by the diagramB  ! V ? VV ? V(15)



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 19With this notation for B, one can view a chord diagram of degree m as a recipe forhow to contract m copies of B and get a tensor T (D) 2 End V . This is best explainedby an example; see �gure 8.
V V ? V V ? V V ? VV ? B B

Figure 8. The construction of T (D). The B components are as in (15), and pairs ofspaces surrounded by a box should be contracted. The two un-boxed spaces are V ? and V ,and thus the result is a tensor in V ? 
 V = EndV .One can show (see [B-N1, B-N2]) that the resulting tensor T (D) is independentof the choice of the basis of g (indeed, already B is independent of that choice),is an intertwinner, and that the map D 7! trT (D) satis�es the 4T relation, andhence it descends to a map Wg;V : A ! F (the metric t is usually suppressed fromthe notation). If V is an irreducible representation and C is its quadratic Casimirnumber (the ratio Wg;V � � =Wg;V � �), one can de�neŴg;V =Wg�u(1);V̂ ;where V̂ = V 
 p�C and p�C denotes the 1-dimensional representation of the 1-dimensional Lie algebra u(1), in which the unit norm generator acts by multiplicationby p�C. Notice that the representations V and V̂ are in the same vector space,and that Ŵg;V (D) can be computed using the same procedure as in �gure 8, onlyeverywhere replacing B by B̂, where B̂ = B � C � I.Recall from section 2.2 that Jg;V (q) is the (framing dependent) Reshetikhin-Turaevknot invariant associated with the algebra g and the representation V (and the met-ric t), and that (when V is irreducible) Ĵg;V (q) = q�C�writhe � Jg;V (q) is its framingindependent version. Consider both invariants as Vassiliev power series in the formalparameter ~ by substituting q = e~.Proposition 4.1. The weight system (in the sense of de�nition 2.2) of Jg;V is Wg;Vand (when V is irreducible) the weight system of Ĵg;V is Ŵg;V .Proof. The framing dependent part is in [Pi1]; it follows easily from the relationR�(R21)�1 = ~B+o(~) satis�ed by the quantum Yang-Baxter matrix R. The framingindependent part follows from the fact [B-N2, exercise 6.33] that the weight systemcorresponding to a direct sum of Lie algebras (and tensor products of representations)is the product of the weight systems of the algebras (and representations) involved,



20 DROR BAR-NATAN AND STAVROS GAROUFALIDISand from a direct (and very simple) analysis of the weight system of exp(�~C �writhe)and of the weight system Wu(1);p�C (see [B-N2, exercise 6.34]).Let us now switch from general consideration to the particular case of g = sl(2)and V = V�.4.2. Understanding B̂. In one of the standard models6 of the representation V�,it is spanned by vectors v0; : : : ; v�, satisfyinghvk = (�� 2k)vk;yvk = (k + 1)vk+1; and xvk = (�� k + 1)vk�1;where h =  1 00 �1 ! ; x =  0 10 0 ! ; and y =  0 01 0 !(16)is the standard basis of sl(2). Using the standard scalar product on sl(2) (hM1;M2i =tr(M1M2)), we have 12hh; hi = hx; yi = hy; xi = 1, with all other scalar productsbetween h, x, and y vanishing.Therefore, B̂ = y 
 x+ x
 y + 12h
 h� C � I;where C, the quadratic Casimir number of V�, is given by C = �(� + 2)=2 (see e.g.[Hu, exercise 4 in section 23]).By an explicit computation, we �nd that(17) B̂(vk 
 vk0) = (k + 1)(�� k0 + 1)vk+1 
 vk0�1+(��k+1)(k0+1)vk�1
vk0+1+ 12 ((�� 2k)(�� 2k0)� �(�+ 2)) vk
vk0= �(B+ +B� + I)(vk 
 vk0) + (terms of degree 0 in �) ;(18)where B+ = X�=0;1(�1)�B+� ; B+� (vk 
 vk0) = �(k + 1)vk+� 
 vk0��;and B� = X�=0;1(�1)�B�� ; B�� (vk 
 vk0) = �(k0 + 1)vk�� 
 vk0+�:6Here and later in this paper, we follow the notation of [Hu] for Lie algebras and theirrepresentations.



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 21Proof of part 1 of theorem 1. Recall that B̂ = B̂(�) depends on �. We wish to studythis � dependence. The di�erent B̂(�)'s lie in di�erent spaces, but this is not aserious problem: Let V̂1 be the vector space spanned by in�nitely many basis vectorsfvkg1k=0, and extend B̂(�) for all � to be elements of End(V̂1
 V̂1) using the explicitformula (17). For a chord diagram D, T (D) 2 End(V̂1) can be constructed as beforeas in �gure 8 (no in�nite sums occur!), and when restricted to V̂�, the new de�nitiongeneralizes the old one.Now that the di�erent B̂(�)'s can be compared, equation (18) shows that B̂(�) isat most linear in � and thus T (D) is at most of degree m in �, where m = degD.Taking the trace of an intertwinner (back again in V̂�!) multiplies by � + 1, thedimension of V̂�, and that factor is canceled by the denominator in (3). Finally,by the general considerations of section 2, the result on the level of knot invariantsfollows from the level of weight systems.4.3. Understanding WJJ. Clearly, in computing WJJ(D) for some degree m chorddiagram D, it is enough to consider B+ + B� + I, the coe�cient of � in B̂. So letT (D) be the operator constructed as in �gure 8, only with B+ + B� + I replacingB. As T (D) is an intertwinner, T (D) =WJJ(D)I. Similarly, let T 0(D) be the same,only with B++B� replacing B, and let W 0JJ(D) satisfy T 0(D) =W 0JJ(D)I. It is easyto verify that WJJ = W 0JJ �W1, where the product is taken using the coproduct on A(the space spanned by chord diagrams), and W1 2 A? satis�es W1(D) = 1 for anychord diagram D.Let D be a degree m chord diagram, and let (C
)m
=1 be the chords of D, numberedfrom left to right as in de�nition 3.4. We are interested in computing T (D)vk(1), or,almost equivalently, T 0(D)vk(1), for some non-negative integer k(1). Looking againat �gure 8 and at (18), we see that T 0(D)vk(1) can be computed as follows:� Sum over the 4m possible ways of marking the chords (C
)m
=1 of D by signss(
) 2 f+;�g and numbers �(
) 2 f0; 1g, corresponding to the choice betweenfB+0 ; B+1 ; B�0 ; B�1 g. Take the term marked by (s; �) with a sign Q
(�1)�(
).� For each �xed choice of (s; �), add a term determined as follows: Set k = k(1).`Feed' the marked diagram D(s;�) with the vector vk on the left, and push itright passing it through the vertices of D. Each vertex corresponds to somesimple operation, dictated by the marking on the chord C
 connected to it.The operation is to add or subtract �(
) to k, and to multiply by either 1 or�(k + 1), using the current value of k for the multiplication. The end result,as read at the right end of D(s;�), is proportional to the original vk(1); our termis the corresponding constant of proportionality.To make the above algorithm more precise and write the result in a closed form,we need to make some de�nitions. First, number the vertices of D from left to right,beginning with 1 and ending with 2m. Let i+
 (i�
 ) be the number of the left (right)



22 DROR BAR-NATAN AND STAVROS GAROUFALIDISend of the chord C
 , and let the domain of C
 bedomC
 = (i+
 ; i�
 ] = fi 2 N : i+
 � i < i�
 g:Let k(i) be the value of k before passing the i'th vertex. It is easy to check thatk(i) = k(1) + Xf
:i2domC
g s(
)�(
):Our notation is summarized by the following example:
k(1) k(2) k(3) k(4) k(5) k(6)

C3 : s(3); �(3)C1 : s(1); �(1) C2 : s(2); �(2)i+1 = 1 i+2 = 2 i�1 = 3 i+3 = 4 i�2 = 5 i�3 = 6
(19)
Using this notation, the algorithm becomes the following formula:W 0JJ(D) = (�1)m Xs2f+;�gm�2f0;1gm mY
=1(�1)�(
) �1 + k(is(
)
 )�De�ne the `di�erence' operators �=��(
) on polynomials P in the variables �(
),
 = 1; : : : ; m by �P��(
) = P j�(
)=1 � P j�(
)=0:(20)With this de�nition,W 0JJ(D) = (�1)m Xs2f+;�gm0@ mY
=1 ���(
)1A0B@ mY
=10B@1 + k(1) + Xf�:is(
)
 2domC�g s(�)�(�)1CA1CANotice that in the above formula we take the m'th partial di�erence (with respectto �(1); : : : ; �(m)) of a polynomial of degree at most m in these variables. By an easyto prove partial di�erence analog of Taylor's theorem, the result is the coe�cient of�(1) � � � �(m) in(�1)m Xs2f+;�gm mY
=10B@1 + k(1) + Xf�:is(
)
 2domC�g s(�)�(�)1CA :



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 23As only one �(�) can be picked up from any factor in the product over 
 = 1; : : : ; m,this coe�cient is the (properly signed) number of choices of an �(�) for each of these
's, or, in other words,W 0JJ(D) = (�1)m Xs2f+;�gm Xf�2Sm:8
 is(
)
 2domC�(
)g mY
=1 s(�(
)):The condition in the summation over the permutation � can be made a little stronger.Notice that if for a given 
 both i+
 2 domC�(
) and i�
 2 domC�(
) (that is, bothends of the chord C
 are within the domain of the chord �(
)), then the terms withs(
) = (+) cancel the terms with s(
) = (�) in the above sum, and thus summationcan be restricted to the cases where this does not happen. In these cases, for each� there is a unique choice for the s(
)'s for which 8
 is(
)
 2 domC�(
). Denote thischoice by s(�; 
) and getW 0JJ(D) = Xf�2Sm:8
 C
 intersects or equals C�(
)g mY
=1(�s(�; 
)):Finally, if 
 = �(
), then necessarily s(
) = (+) and thus s(�; 
) = (+). Thismeans that the possibility `C
 equals C�(
)' can be removed from the above equationby multiplying it by W1. Thus,WJJ(D) = Xf�2Sm:8
 C
 intersects C�(
)g mY
=1(�s(�; 
)):A moment's re
ection shows that this formula proves the following proposition:Proposition 4.2. WJJ(D) is the permanent per IM(D) of the intersection matrixIM(D) of D. (Recall that the permanent of a matrix is de�ned as a sum over permu-tations in exactly the same way as the determinant, only without the signs).4.4. The logarithm of the JJ weight system.Proposition 4.3. (logWJJ)(D) =XH (�1)d(H);where the sum extends over all cycle decompositions of LIG(D) into a single cycle.Proof. Expand per IM(D) as a sum over permutations just as in (12), and getWJJ(D) = XH=[�H�(�1)d(H):Now take the logarithm as in proposition 3.13.Comparing this with proposition 3.13, we �nd that logWC + logWJJ = 0, provingequation (11) and concluding the proof of the Melvin-Morton-Rozansky conjecture.



24 DROR BAR-NATAN AND STAVROS GAROUFALIDIS5. The MMR conjecture for general semi-simple Lie algebrasLet Ĵ = Ĵg;V�(K) 2 Q(q) be the framing-independent Reshetikhin-Turaev invariantof the knot K for the semi-simple Lie algebra g and the irreducible representationV� of g of highest weight �. (The metric on g will be the Killing form h�; �i). In thissection we will prove an analog of theorem 1 (and thus of conjecture 1) for Ĵ .Choose a Cartan subalgebra h of g, denote by � the set of all roots of g in h?, andby �+ the set of all positive roots. Let h�; �i also denote the scalar product on h?induced by the Killing form.The following theorem is suggested by the same reasoning as in section 1.4, onlyreplacing SU(2) by g. The main di�erence is that �RS(Aa) splits into a product ofdim g Abelian torsions, rather than just 3. The torsions along the Cartan directionsare still 1, while those along the negative roots pair with those along the positive rootsto give a product of Alexander polynomials (appearing under the alias ~C, discussedin examples 2.7 and 2.8):Theorem 4. (Proven in sections 5.1{5.4). Regarding Ĵ(K)(e~)= dimV� as a powerseries in ~ whose coe�cients are polynomials in �, we have:(1) The coe�cient Ĵm of ~m is of degree at most m in �.(2) If JJg is the power series in ~ whose degree m coe�cient is the homogeneousdegree m piece of Ĵm, thenJJg(K)(~) � Y�2�+ ~C(K) (h�; �i~) = 1:(21)(Since on a simple Lie algebra every invariant scalar product is a multiple of theKilling form and the left-hand-side of (21) is clearly multiplicative under taking thedirect sum of Lie algebras, it follows that (21) still holds when h�; �i is replaced byan arbitrary invariant scalar product on g, in both the ~C part of the equation and inthe de�nition of Ĵ .)As in section 2, it is enough to prove theorem 4 on the level of weight systems.Furthermore, in the light of theorem 1, in order to prove (21) it is enough to provethat WJJ;g = Y�2�+WJJ � h�; �ideg;(22)where h�; �ideg is de�ned as in de�nition 2.3.5.1. Lie-algebraic preliminaries. Let g = h � (��2�L�) be the root space de-composition of g. Recall (e.g. [Hu]) that h is orthogonal to all the L�'s, that L� isorthogonal to L� unless � + � = 0 and that one can �nd x� 2 L�, y� 2 L��, for all� 2 � so that



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 25Setting h� = [x�; y�], the triple fx�; y�; h�g spans a subalgebra of gisomorphic to sl(2) via the map (x�; y�; h�) 7! (x; y; h), where fx; y; hgare as in (16).(23) hx�; y�i = 2=h�; �i.(24) For any � 2 h? and � 2 � � h?, one has �(h�) = 2h�; �i=h�; �i.(25)An additional property worth recalling isFor any �; � 2 �, [L�; L�] � L�+�.(26)Choose a total ordering < of �+ for which �; � < � + � for any �; � 2 �+. (Forexample, you can order the roots by the lengths of their projections on some genericvector in the fundamental Weyl chamber). Let v0 2 V� be a highest weight vector;that is, a vector satisfying hv0 = �(h)v0 for all h 2 h and x�v0 = 0 for all � 2 �+. LetZ+�+ = fP�2�+ k��� : 8� k� 2 Z+g be the semi-group of formal linear combinationsof symbols ��, one for each � 2 �+, with non-negative integer coe�cients. De�ne amap f�g : Z+�+ ! h? by fP k���g = P k��. Order Z+�+ lexicographically, that is,declare that P k��� < P k0��� i� for some �, k� < k0� and k� = k0� for all � < �. Forany k 2 Z+�+, set vk = 0@ Y�2�+ yk��k�!1A v0;(27)where the k�'s are the coe�cients of k and the product is taken using a decreasingorder for the y�'s, so that, for example, if � > �, thenvk = 0@� � � yk��k�! � � � yk��k�! � � �1A v0:(28)The action of g on V� is given by the followingLemma 5.1. With the notation as above we have thathvk = (�� fkg)(h)vk;(29) y�vk = (k� + 1)vk+�� + Xj2Z+�+j>k+�� c1(�; k; j)vj(30) x�vk = 2h�; �ih�; �ivk��� + Xj2Z+�+j>k��� c2(�; �; k; j)vj +O(1);(31)where c1 does not depend on �, c2 is linear in �, and here and in the next fewparagraphs O(1) means terms independent of �.



26 DROR BAR-NATAN AND STAVROS GAROUFALIDISThe importance of the precise form of the `remainder terms' in the above lemmawill be better understood after reading the proof of lemma 5.2. We therefore postponethe proof of lemma 5.1 to section 5.4.5.2. Understanding B̂. As in section 4, the key to understanding WJJ;g is to �rstunderstand B̂ 2 End(V̂� 
 V̂�), where V̂� = V� 
 p�C and p�C denotes the 1-dimensional representation of the 1-dimensional Lie algebra u(1), in which the unitnorm generator acts by multiplication by p�C, and C is the quadratic Casimirnumber of V�.Let fhigri=1 be an arbitrary h�; �i-orthonormal basis of h. Using (24), we �nd thatB̂ = X�2�+ h�; �i2 (x� 
 y� + y� 
 x�) + rXi=1 hi 
 hi � C � I:Since the quadratic Casimir number C of the representation V� is h�+ 2�; �i, where� = 1=2P�2�+ � is half the sum of the positive roots [Hu, exercise 4 in section 23],we also have that rXi=1 hi 
 hi � C! vk 
 vk0= �((�� fkg)
 (�� fk0g)) �Xhi 
 hi�� C� vk 
 vk0 by lemma 5.1= (h�� fkg; �� fk0gi � h�; �+ 2�i) vk 
 vk0 by Pythagoras' theorem= �h�; 2�+ fkg+ fk0givk 
 vk0 +O(1)= � X�2�+h�; �i(1 + k� + k0�)vk 
 vk0 +O(1) expanding �, fkg, fk0g.Using the above formula and lemma 5.1 we get thatB̂ = X�2�+h�; �i(B+� +B�� + I) +Brest +O(1)(32)where B+� (vk 
 vk0) = �(k� + 1) X�=0;1(�1)�vk+��� 
 vk0����B�� (vk 
 vk0) = �(k0� + 1) X�=0;1(�1)�vk���� 
 vk0+���Brest(vk 
 vk0) = Xj;j02Z+�+j+j0>k+k0 c3(�; k; k0; j; j 0)vj 
 vj0;and where c3 (which is a simple combination of c1;2) is linear in �.Since B̂ is at most linear in � we conclude the �rst part of theorem 4 as in sec-tion 4.2.



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 275.3. Understanding WJJ;g. Reading section 4.3 once again and looking at �gure 8,we see that WJJ;g(D) is a certain summation over all the possible ways of labelingthe chords of D by I, B+� , B�� , or Brest.Lemma 5.2. In the summation making WJJ;g(D), terms containing a chord labeledby Brest can be ignored.Proof. This statement is best proven by an example. Let k(i) be the value of kbefore passing the i's vertex of D, as in (19) (but notice that now k(i) is in Z+�+rather than in Z+). Similarly, let k(7) be the value of k after passing the sixth vertex(assuming, for the sake of this example, that D is the diagram in (19)). As T (D)is an intertwinner, it has to be a multiple of the identity and thus k(7) = k(1). Onthe other hand, by (32) (and remembering that in as much as WJJ;g is concerned, weneed not care about the O(1) term), we �nd thatk(1) + k(3) � k(2) + k(4);k(2) + k(5) � k(3) + k(6);k(4) + k(6) � k(5) + k(7):Adding these inequalities, we get k(1) � k(7), and this inequality becomes strict ifany of the previous ones is strict. As we know that k(1) � k(7) cannot be strict,we learn that none of the previous ones is, and thus we can ignore Brest (as it wouldcorrespond to a strict inequality).Therefore, in computing WJJ;g(D), it is enough to considerX�2�+h�; �i(B+� +B�� + I):(33)Nicely enough, the di�erent summands in (33) are `decoupled'. For each �, B�� caresonly about the � components of the k(i)'s, and changes only these components. Thisamounts to saying that WJJ;g is the product of the weight systems corresponding tothe di�erent summands. Comparing the de�nition of B�� with the de�nition of B�in section 4, we �nd that we've proven (22) and hence we've proven theorem 4.5.4. Proof of lemma 5.1. (29) is just the well known statement that the y�'s actas `lowering operators'. To prove (30), let us compute y�Q�(yk�� =k�!) (using the sameconvention as in (28) for the ordering of products). To bring this expression to theform of (27), we need to commute y� to its place, next to the term yk�� =k�!. Thisdone, the result is � � � y�yk��k�! � � � = � � � (k� + 1) yk�+1�(k� + 1)! � � � ;explaining the �rst term in (30). However, en route to its place, we needed tocommute y� with various y�'s for which � > �. By (26) and the choice of the order



28 DROR BAR-NATAN AND STAVROS GAROUFALIDIS<, such commutators are proportional to y
's with even bigger 
's, explaining theremainder term in (30). To be fair, the resulting y
's also need to be taken to theirrespective places, at the cost of some more commutators proportional to even biggery�'s, but that doesn't disturb (30). A complete argument can be given using thePBW theorem for the subalgebra of g generated by fy� : � > �g, but we don't feelthis is necessary.The proof of (31) is a little harder, but goes along similar lines. Consider anexpression like x�Q�(yk�� =k�!). Commuting x� all the way to the right, we get aproduct that kills the heighest weight vector v0. Along the way, we pick up threekinds of commutators:(1) First, we pick some [x�; y�]'s, with � > �. By (26), if � > �, [x�; y�] isproportional to some y
, resulting in terms which are products of y's, andthus they fall into the third summand of (31), O(1).(2) We then pick the term containing [x�; yk�� ], which, using (23), givesY�>� yk��k�! � 1k�! 0@ k�Xi=1 yi�1� h�yk��i� 1A � Y�<� yk��k�! :By (29), applied to v0 this is �(h�)vk��� +O(1), and by (25), this is2h�; �ih�; �ivk��� +O(1);explaining the �rst term in (31).(3) Finally, we get terms containing [x�; y�]'s, with � < �. By (26), if � < �,[x�; y�] is proportional to some x
 with 
 < �. Such x
 are pushed to theright recursively using the same procedure we've used so far, at the cost of (atmost) terms independent of � and terms linear in �, as in case (2) above, butwith vk��
 (or vk��� for even smaller �) replacing vk���. Such terms fall into themiddle term of (31). 6. Odds and ends6.1. Immanants and the Conway polynomial. Theorem 3 and proposition 4.2show (in particular) that both the map D 7! det IM(D) and the map D 7! per IM(D)are weight systems. It is tempting to look for common generalizations of these twoweight systems. In this section, which may be of some independent interest, wesketch just such a generalization. The basic idea is that just where the character ofthe alternating representation of the symmetric group Sm is used in the de�nition ofdet and the character of the trivial representation is used in the de�nition of per, onecan put the character of an arbitrary representation of Sm:De�nition 6.1. Let [�] denote the conjugacy class of a permutation �. Let ZSm bethe free Z-module generated by the conjugacy classes of Sm. Let ZS? be the graded



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 29Z-module whose degree m piece is ZSm. The natural embedding � : Sm�Sn ! Sm+nmakes ZS? an algebra by setting [�][� ] = [�(�; �)]. Identifying ZS? with its dual bydeclaring each individual conjugacy class [�] to be of unit norm, the product on ZS?becomes a co-product on ZS?? = ZS?.Exercise 6.2. Verify that with the above product and co-product ZS? becomes agraded commutative and co-commutative Hopf algebra, and that the primitive ele-ments of ZS? are exactly the classes of cyclic permutations (and thus ZS? has exactlyone generator in each degree).De�nition 6.3. (Compare with [Lit]) Let M be an m � m matrix. The universalimmanant immM of M is de�ned byimmM = X�2Sm[�] mYi=1Mi�i 2 ZSm:(Exactly the same as the de�nition of detM , only with [�] replacing (�1)�).Composing the universal immanant with characters of arbitrary representationsof Sm, one gets speci�c complex valued \immanants". Taking the representationto be the alternating representation, one gets detM . Taking it to be the trivialrepresentation, one gets perM . Much is known about many other immanants; seee.g. [GJ, St1, St2].In our context, we will be interested in the universal immanant of the intersectionmatrix of a chord diagram. By abuse of notation, we will write immD for imm IM(D).Theorem 5. (1) The map imm : fchord diagramsg ! ZS? descends to a wellde�ned map imm : Ar ! ZS?.(2) The thus de�ned imm : Ar ! ZS? is a morphism of Hopf algebras.(3) The image of the adjoint map imm? : ZS?? = ZS? ! Ar? = W is the subal-gebra of W generated by the weight systems of the coe�cients of the Conwaypolynomial.Proof. (sketch) Let Lm be the degree m piece of logWC , and let Cm 2 Sm be acyclic permutation. Re-interpreted in our new language, proposition 3.13 is simplythe statement imm?[Cm] = �Lm and equation (14) becomes the multiplicativity ofimm?. It follows that the image of imm? is equal to the subalgebra of the algebra offunctionals on chord diagrams generated by the Lm's. As Lm is known to be a weightsystem and the product of two weight systems is again a weight system, it followsthat the image of imm? is in W and thus imm descends to Ar. Finally notice thatthe algebra generated by the Lm's is equal to the algebra generated by the weightsystems of the coe�cients of the Conway polynomial.



30 DROR BAR-NATAN AND STAVROS GAROUFALIDISIt is easy to check (or deduce from theorem 5) that imm?[�] = 0 if � has a cycle ofan odd length. By evaluating imm?[�] on chord diagrams whose intersection graphis a union of polygons of an even number of sides, one can see that imm? restrictedto permutations with no cycles of odd length is injective.Exercise 6.4. Check that if IM(D) is replaced by IM(D) + �I for any non-zero con-stant � and Ar and W are replaced by A and A? in the statement of theorem 5, thetheorem remains valid, with the unique element of G1A? adjoined to the generatorsof the image of imm?.6.2. A curious formula for the weight system of the colored Jones poly-nomial. (A sketch). The key to the understanding of WJJ in section 4.3 was torewrite (17) in a nicer form, equation (18). There is an even nicer form, however,that also includes the terms independent of �: (suppressing `
' symbols)B̂(vkvk0) =��(k + 1)(vk+1vk0�1 � vkvk0| {z }part 1 )� (k0 + 1)(vkvk0 � vk�1vk0+1| {z }part 2 ) + vkvk0�+ (k � k0)(vk+1vk0�1 � vk�1vk0+1| {z }part 3 ) + vk+1vk0�1 + vk�1vk0+1� kk0(vk+1vk0�1 � 2vkvk0 + vk�1vk0+1| {z }part 4 ):Following roughly the same steps as in section 4.3, parts 1 and 2 of the aboveequation become `derivatives' like in (20). Part 3 also becomes a derivative, but withan additional factor of 2 as in it `�k = 2'. Part 4 becomes a `second derivative',and all other parts remain `0th order'. These `di�erentiations' mean that we want tolook at the coe�cients of certain monomials in the �'s of section 4.3, and when allthe dust settles we remain with the following (completely self-contained) formula:Theorem 6. Let D be a chord diagram of degree m, and let i�
 and domC
 be as insection 4.3. Let �(
) be commuting indeterminates, and letk(i) = Xf
:i2domC
g �(
):Then WĴ(D) (the weight of D in the weight system of the framing-independentReshetikhin-Turaev invariant of sl(2) in the (� + 1)st dimensional representation)is the term independent of all the �(
)'s in(�+ 1) mY
=1 (�+ 2) 1 + k(i+
 )� k(i�
 )�(
) !� 2k(i+
 )k(i�
 )�(
)2 ! :Exercise 6.5. Deduce the equality WJJ(D) = per IM(D) from the above theorem.



ON THE MELVIN-MORTON-ROZANSKY CONJECTURE 31Arguing similarly but starting from the `framed' B = x
 y+ y
 x+ h
 h=2, one�nds that the weight ofD in the weight system of the framing-dependent Reshetikhin-Turaev invariant of sl(2) in the (� + 1)st dimensional representation is the termindependent of all the �(
)'s in(�+ 1) mY
=1 (�+ 2) 1 + �2 + k(i+
 )� k(i�
 )�(
) !� 2k(i+
 )k(i�
 )�(
)2 ! :Remark 6.6. Experimentally (on a computer) we found that the above formulas ap-pear to be (by far) the best method for computing the corresponding weight systems.But, in some sense, we do not understand them very well:(1) Our only proof that the above formulas satisfy the 4T relation is by tracingthem back to sl(2). It would be interesting to �nd a direct proof.(2) We do not know how to generalize these formulas to other Lie algebras.(3) We do not know how to view these formulas in the context of Rozansky's work.More speci�cally, it should be possible to push exercise 6.5 a little further andget formulas for the `sub-diagonal' invariants JJn = Pm bm�n;m~m (for smalln), and it should be possible to expand (6) in powers of 1=k using Feynmandiagrams. The 1=kn term in (6) should equal JJn. In this paper we dealt withthe case n = 0 but we don't know how to deal with higher values of n.6.3. A further generalization. If, as conjectured in [B-N2], all weight systemscome from Lie algebras, then there should be a way of stating and proving the-orem 4 without any reference to Lie algebras. We do not have a precise analogof the statement; without a Lie algebra, it is not clear what � is and in whichspace it should be. However, on the level of group representations,  nV� = Vn� +(representations of a smaller highest weight), and thus the Adams operations  n,which have a generalization to arbitrary weight systems [B-N2], can play a role similarto `scaling �'. We thus arrive at the following conjecture7:Conjecture 2. Let W be an arbitrary weight system, let n be an integer, and letŴ n =\ n?W be the deframed version (as in [B-N2, exercise 3.16]) of W �  n, where n is the nth Adams operation on chord diagrams. Then(1) For any �xed chord diagram D of degree m, Ŵ n(D) is a polynomial in n ofdegree at most m.(2) Let Ŵ n;m(D) be the degree m piece of Ŵ n(D). Then the weight system Ŵ n;mis in the algebra generated by the coe�cients of the Conway polynomial.A similar statement should hold on the level of knot invariants, using the `0-framing' of a knot for the Adams operations.7Added in proof: This conjecture was proven in November 1995 by A. Kricker, B. Spence, andI. Aitchison. See their Melbourne University and Queen Marry and West�eld College preprint,Cabling the Vassiliev Invariants.
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