
FINITE TYPE INVARIANTS OF W-KNOTTED OBJECTS IV: SOME

COMPUTATIONS

DROR BAR-NATAN

Abstract. In the previous three papers in this series, [WKO1]–[WKO3], Z. Dancso and
I studied a certain theory of “homomorphic expansions” of “w-knotted objects”, a certain
class of knotted objects in 4-dimensional space. When all layers of interpretation are stripped
off, what remains is a study of a certain number of equations written in a family of spaces
Aw, closely related to degree-completed free Lie algebras and to degree-completed spaces of
cyclic words.

The purpose of this paper is to introduce mathematical and computational tools that
enable explicit computations (up to a certain degree) in these Aw spaces and to use these
tools to solve the said equations and verify some properties of their solutions, and as a
consequence, to carry out the computation (up to a certain degree) of certain knot-theoretic
invariants discussed in [WKO1]–[WKO3] and in my related paper [BN4].

Contents

1. Introduction 2
1.1. Acknowledgement 6
2. Group-like elements in Aw 6
2.1. A brief review of Aw 6
2.2. Some preliminaries about free Lie algebras and cyclic words 11
2.3. The lower-interlaced presentation El of A

w
exp 16

2.4. The factored presentation Ef of Aw
exp and its stronger precursor Es 20

2.4.1. The family tAwpH ;T qu 21
2.4.2. Operations on tAwpH ;T qu. 22
2.4.3. Group-like elements in tAwpH ;T qu. 23
2.4.4. The inclusion tAwpSqu ãÑ tAwpH ;T qu. 27
2.5. Converting between the El and the Ef presentations. 29
3. Some Computations 30
3.1. Tangle Invariants 30
3.1.1. The General Framework 30
3.1.2. The Knot 817 and the Borromean Tangle 32
3.2. Solutions of the Kashiwara-Vergne Equations 32

computations below

Date: First edition Nov. 15, 2015, this edition Jul. 26, 2016. Electronic version and related files at [WKO4],
http://drorbn.net/AcademicPensieve/Projects/WKO4. The arXiv:1511.05624 edition may be older.
2010 Mathematics Subject Classification. 57M25.
Key words and phrases. w-knots, w-tangles, Kashiwara-Vergne, associators, double tree, Mathematica, free
Lie algebras.
This work was partially supported by NSERC grant RGPIN 262178.

1

http://drorbn.net/AcademicPensieve/Projects/WKO4
http://front.math.ucdavis.edu/1511.05624

3.3. The involution τ and the Twist Equation 36
3.4. Drinfel’d Associators 38
3.5. Associators in Aw 39
3.6. Solving the Kashiwara-Vergne Equations Using a Drinfel’d Associator 42
3.7. A Potential S4 Action on Solutions of KV 43
4. Glossary of notation 46
References 48

1. Introduction

Within the previous three papers in this series [WKO1]–[WKO3]1 a number of intricate
equations written in various graded spaces related to free Lie algebras and to spaces of cyclic
words were examined in detail, for good reasons that were explained there and elsewhere.
The purpose of this paper is to introduce mathematical tools (on the upper parts of pages)
and computational tools (on the lower parts of pages, below the bold dividing linesC1) that
allow for the explicit solution of these equations, at least up to a certain degree.

1Also within my [BN4], and within papers by Alekseev, Enriquez, and Torossian [AT, AET], and within
Kashiwara’s and Vergne’s [KV], and also within many older papers about Drinfel’d associators (e.g. Drin-
fel’d’s [Dr1, Dr2] and my [BN2].

computations below

C1If you are not interested in the actual computations, it is safe to ignore the parts of pages below the bold
dividing lines and restrict to “strict” mathematics, which is always above these lines. Alert. If you are
interested in the computations, note that the computational footnotes are sometimes long and crawl across
page boundaries. This footnote is the first example.
The programs described in this paper were written in Mathematica [Wo] and are available at [WKO4].
Before starting with any computations, download the packages FreeLie.m and AwCalculus.m and type
within Mathematica: (the interactive Mathematica session demonstrated in this paper is available as
[WKO4]/WKO4Session.nb)

2

http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/WKO4Session.nb

“

V V ˚ “ 1; V C12 “ C1C2

[AT]: jpF q P impδ̃q

Reidemeister-4

R23R13V “ R12,3

[AT]: F px ` yq “ log exey

together, “the Kashiwara-Vergne (KV) Equations”

“

R12R13R23 “ R23R13R12

Buckle

the key to
knot invariants

Twist

ΦΦ1,23,4Φ234 “ Φ12,3,4Φ1,2,34

“Drinfel’d associators”

“

u u

Θ “ V ´1RV 21

compatibility of associators

Pentagon

with Kashiwara-Vergne solving KV using Φ
pΦ´1q13,2,4Φ132R23Φ´1Φ12,3,4

„

Yang-Baxter Unitarity and Cap

Figure 1.1. The most important equations.

Why bother? What do limited explicit computations add, given that these intricate equa-
tions are known to be soluble, and given that the conceptual framework within which these
equations make sense is reasonably well understood [WKO1]–[WKO3]? My answers are
three:

(1) Personally, my belief in what I can’t compute decays quite rapidly as a function of
the complexity involved. Even if the overall picture is clear, the details will surely
go wrong, and sooner or later, something bigger than a detail will go wrong. Even
a limited computation may serve as a wonderful sanity check. In situations such as
ours, where many signs and conventions need to be decided and may well go wrong,
even a low-degree computation increases my personal confidence level by a great degree.
Given computations that work to degree 6 (say), it is hard to imagine that a detail was
missed or that conventions were established in an inconsistent manner. In fact, if the
computer programs are clear enough and are shown to work, these programs become the
authoritative declarations of the details and conventions.

(2) The computational tools introduced here may well be useful in other contexts where free
Lie algebras and/or cyclic words arise.

(3) The papers [WKO1, WKO2] (and likewise [BN4]) are about equations, but even more so,
about the construction of certain knot and tangle invariants. With the tools presented
here, the invariants of arbitrary knotted objects of the types studied in [WKO1, WKO2,
BN4] may be computed.

The equations of [WKO1]–[WKO3] always involve group-like, or “exponential” elements,
and are written in some spaces of “arrow diagrams” that go under the umbrella name Aw.
Hence a crucial first step is to find convenient presentations for the group-like elements Aw

exp

in Aw-spaces. It turns out that there are (at least) two such presentations, each with its own
advantages and disadvantages. Hence in Section 2 we recall Aw briefly (2.1), then discuss

3

tTWlpSqu

˚,dm,...

�� Γ --

El

��

tTWspSqu

˚,#,dm,...

��

Λ“Γ´1

mm
�

� //

Es

��

Ef

yyss
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

tTWspH ;T qu

˚,#,dm,hm,tm,tha,...

��

Es

��
Aw

exppSq
(

˚,dm,...

YY

δ ..
Aw

exppS;Sq
(

˚,#,dm,...

YY
δ´1

mm
�

� //

Aw

exppH ;T q
(

˚,#,dm,hm,tm,tha,...

YY

Figure 1.2. The main spaces and maps appearing in this paper.

some free-Lie-algebra preliminaries (2.2), then describe the Alekseev-Torossian-[AT]-inspired
“lower-interlaced” presentation El of A

w
exp (2.3), then describe the [BN4]-inspired “factored”

presentation Ef of Aw
exp and its stronger precursor “split” presentation Es (2.4), and then

describe how to convert between the two primary presentations (2.5).
We then present our computations in Section 3: Some knot and tangle invariants are com-

puted in Section 3.1 and solutions of the Kashiwara-Vergne (KV) equations in Section 3.2. In
Section 3.3 we discuss the “Twist Equation” and compute dimensions of spaces of solutions
of the linearized KV equations, with and without the Twist Equation. In Section 3.4 we
compute a Drinfel’d associator, in Section 3.5 we compute associators in Aw starting from a
solution of the KV equations, and in Section 3.6 we show how to compute a solution of KV
from a Drinfel’d associator. The last computational result is in Section 3.7, where we give
computational support to the existence of an action of the symmetric group S4 on the set of
solutions of the Kashiwara-Vergne Equations.

We conclude this introduction with a description of the commutative diagram in Figure 1.2
which displays the main spaces and maps appearing in this paper, as described in detail in
Section 2. The bottom row of this diagram consists of spaces of “group-like” elements inside
spaces Aw of “arrow diagrams”; these are the spaces that have direct knot-theoretic signifi-
cance. The top row are spaces of “trees and wheels”, or more precisely, various elements of
free Lie algebras and various cyclic words. They are the spaces of “primitives” corresponding
to the group-like elements at the bottom, via various “exponentiation” maps El, Ef , and
Es. In this paper we studyC2 the spaces on the bottom row by means of their presentations
by elements in the top row.

The collection

Aw

exppSq
(
of spaces we primarily wish to study (and in which most of the

equations of Figure 1.1 are written) appears on the bottom left. There are many binary
and unary operations acting on the spaces within

Aw

exppSq
(
as indicated by the circular

computations below

The last input (“human”) line above declares that by default we wish the computer to print series within
graded spaces (such as free Lie algebras) to degree 4. Note that we highlight in pink input lines that affect
later computations.
C2Or “implement”, in computer-speak.

4

self-arrow appearing there, which is labelled with the most important of these operations,
the binary ˚ and the unary dm. On the top left of the diagram are the spaces tTWlpSqu
of trees and wheels which represent

Aw

exppSq
(
via the El presentation. The same collection

of operations acts here too, though notice that the operation dm is grayed-out, because we
have no direct implementation for it in TWl language.

On the bottom right is a bigger collection of spaces,

Aw

exppH ;T q
(
, which contains as

a subset the collection

Aw

exppS;Sq
(
(bottom middle), which is isomorphic in a non-trivial

manner (via δ and δ´1) to

Aw

exppSq
(
. A richer collection of operations act on

Aw

exppH ;T q
(
,

and the most important of those are ˚, #, dm, hm, tm, and tha.
On the top right is the collection tTWspH ;T qu of spaces of trees and wheels which represent
Aw

exppH ;T q
(
via the Es presentation. When restricted to H “ T “ S, this is the collection

tTWspSqu representing

Aw

exppS;Sq
(
, and representing our primary interest

Aw

exppSq
(
via

Ef , the composition of Es with δ´1.
Note that TWl and TWs are set-theoretically the same spaces of trees and wheels. Yet

the operations ˚, dm, etc. act on them in a different manner, and hence they deserve to
have different names2. Note also that TWl and TWs are in fact isomorphic via structure-
preserving isomorphisms (denoted Γ and Λ “ Γ´1). These isomorphisms are compositions of
the relatively simple-minded δ and δ´1 with the more complex “exponentiations” El and Es

and their inverses. Thus the isomorphisms Γ and Λ are non-linear and quite complicated.

AT
We will occasionally comment on the relationship between the constructs
appearing in this papers and three related topics: “topology”, or more pre-

cisely certain aspects of the theory of 2-knots, “Lie theory”, or more precisely certain classes
of formulas that make sense in arbitrary finite-dimensional Lie algebras, and “Alekseev-
Torossian”, or more precisely, issues related to the paper [AT]. These comments will in
general be incomplete and should be regarded as “hints for the already initiated” — people
familiar with the papers [WKO1, WKO2, WKO3, BN4, AT] will hopefully find that these
comments help to put the current paper in context. These comments will always be labelled
by one (or more) of the three logos at the head of this paragraph, which correspond, in order,
to “topology”, “Lie theory”, and “Alekseev-Torossian”.

Within the study of simply-knotted (ribbon) 2-knots, or more precisely w-knotted-
objects as they appear in [WKO1, WKO2, BN4], the rows of Figure 1.2 correspond to

the extra row

tKwpSqu

˚,dm,...

ZZ

δ ..
tKwpS;Squ

˚,#,dm,...

ZZ
δ´1

mm
�

� // tKwpH ;T qu ,

˚,#,dm,hm,tm,tha,...

ZZ

via the “associated graded” procedure described in [WKO2]. Here KwpSq is the set of
S-labelled w-tangles [WKO2], KwpH ;T q is the set of w-knotted H-labelled hoops and T -
labelled balloons [BN4], KwpS;Sq is the same but with H “ T “ S, and δ is the same as
in [BN4]. This correspondence is further recalled throughout the rest of this paper.

2Much as in group theory, a direct product N ˆ H is set-theoretically the same as a semi-direct product
N ¸ H , yet it is wrong to refer to them by the same name.

5

The corresponding Lie-theoretic spaces (compare [WKO1, Section 3.5]) are

UpIgqbS

(

˚,dm,...

YY

δ ..
UpgqbS b Spg˚qbS

(

˚,#,dm,...

YY
δ´1

nn
�

� //

UpgqbH b Spg˚qbT

(
.

˚,#,dm,hm,tm,tha,...

YY

This correspondence is further recalled throughout the rest of this paper.

AT In [AT] there is no good counterparts for last two columns of our diagram. The coun-

terpart of the first (and primary) column is a mixture Ûppan ‘ tdernq ˙ trnq containing
the most important spaces occurring in [AT]. More in the next section.

1.1. Acknowledgement. This paper was written almost entirely with Z. Dancso in the
room (physically or virtually via Skype), working on various parts of our joint series [WKO1]–
[WKO3]. Hence her indirect contribution to it, in a huge number of routine consultations,
should be acknowledged in capitals: THANKS, ZSUZSI. I would like to further thank
A. Alekseev and S. Morgan for their comments and suggestions.

2. Group-like elements in Aw

2.1. A brief review of Aw. Let S “ ta1, a2, . . . u
3 be a finite set of “strand labels”. The

space AwpSq is the completed graded vector space4 of diagrams made of (vertical) “strands”
labelled by the elements of S, and “arrows” as summarized by the following picture:

. . .
a1 a2 an

l r r l

` “ ´

´

´
ÝÝÝÑ
STU1:

ÝÝÝÑ
STU2:

0 “

´

“

“

“0

ÝÝÝÑ
IHX:

ÝÑ
AS:

ÝÝÝÑ
STU3 “ TC:

‚ Diagrams are connected.

‚ Vertices are 2-in 1-out.

‚ Vertices are oriented.

‚ Degree is half the number of trivalent

vertices.

‚ The “skeleton” is a union of vertical

strands labelled by the elements of S.

When S “ t1, 2, . . . , nu we abbreviate AwpÒnq :“ AwpSq.

AT
In topology, elements of AwpSq are closely related to (finite type invariants
of) simply knotted 2-dimensional tubes in R4 ([WKO1]–[WKO3], [BN4]).

In Lie theory, they represent “universal” g-invariant tensors in UpIgqbS, where Ig :“ g ˙
g˚5 and g is some finite dimensional Lie algebra ([WKO1]–[WKO3]). Readers of Alekseev
and Torossian [AT] may care about Aw because using notation from [AT], AwpÒnq is the
completed universal enveloping algebra of pan ‘ tdernq ˙ trn (see [WKO2]), and hence much
of the [AT] story can be told within Aw. Several significant Lie theoretic problems (e.g.,
the Kashiwara-Vergne problem, [KV, AT, WKO2]) can be interpreted as problems about
AwpÒnq.

3Yellow highlighting corresponds to the glossary, Section 4.
4For simplicity we always work over Q.
5In earlier papers we have used the order Ig “ g˚ ¸ g.

6

Comment 2.1. Using the
ÝÝÝÑ
STU2 relation one may sort the skeleton vertices in every D P

AwpSq so that along every skeleton component all arrow heads appear ahead of all arrow
tails, and by a diagrammatic analogue of the PBW theorem (compare [BN1, Theorem 8]),

this sorted form is unique modulo
ÝÝÝÑ
STU 1, TC,

ÝÑ
AS and

ÝÝÝÑ
IHX relations.

Definition 2.2. A number of operations are defined on elements of the AwpSq spaces:

,D1 D2 D1 D2

(1) If S1 and S2 are disjoint, then given D1 P AwpS1q and
D2 P AwpS2q, their union D1D2 “ D1\D2 P AwpSq,
where S “ S1 \ S2, is obtained by placing them side by side as illustrated on the right.

In topology, \ corresponds to the disjoint union of 2-tangles6. In Lie theory,
it corresponds to the map UpIgqbS1 b UpIgqbS2 Ñ UpIgqbpS1\S2q.

(2) Given D1 P AwpSq and D2 P AwpSq, their product D1˚D2 P AwpSq is obtained by
“stacking D2 on top of D1”:

pD1, D2q “ ,D1 D2

D2

D1

“ D1 ˚ D2. (1)

AT
In topology, the stacking product corresponds to the concatenation oper-
ation on knotted tubes, akin to the standard stacking product of tangles.

In Lie theory, it comes from the algebra structure of UpIgqbS. In [AT], it is the product

of the completed universal enveloping algebra Ûppan ‘ tdernq ˙ trnq.
Note that below and throughout this paper we use � for postfix operator application and for
“composition done right”. Meaning that x�f is equivalent to fpxq and f�g is g ˝ f is “do f

then do g”.

1 3

0, ,0

1 2 3

�pdη1 , dη2, dη3q(3) Given D P AwpSq and a P S, D�dηa is the result of
deleting strand a from D and mapping it to 0 if any
arrow connects to a, as illustrated on the right.

In topology, dηa is the removal of one component from a 2-tangle. In Lie theory
it corresponds to the co-unit η : UpIgq Ñ Q.

, ,
�pdA1, dA2, dA3q

p´q1

1 321 32 1 32

p´q1p´q0

1 32

(4) Given D P AwpSq and a P S,
D�dAa is the result of “flipping
over stand a and multiplying by
a p´q sign for each arrow whose head connects to a”, as illustrated above. We denote by
dA the operation of likewise flipping (with signs) all strands: dA “ dAS :“

ś
aPS dA

a.

In topology, dAa is the reversal of the 1D orientation of a knotted tube [WKO2].
In Lie theory, it is the antipode of UpIgq combined with the sign reversal

ϕ Ñ ´ϕ acting on the g˚ factor of Ig. When elements of UpIgqbS are interpreted as
differential operators acting on functions on gS, dA corresponds to the L2 adjoint.

6To be clear, the “2” in “2-tangles” refers to the dimension of the things being knotted, and not to the
number of components.

7

, ,
�pdS1, dS2, dS3q

1 32

p´q2

1 321 32 1 32

p´q1p´q1
(5) Similarly, D�dSa is the result of

“flipping over stand a and mul-
tiplying by a p´q sign for each
arrow head or tail that connects to a”, as illustrated above7.

In topology, dSa is the reversal of both the 1D and the 2D orientation of a
knotted tube [WKO2]. In Lie theory, it is the antipode of UpIgq.

1 32 1 2

�dm23
2 “

1 2

(6) Given D P AwpSq, given a, b P S, and given c R
Szta, bu, D�dmab

c is the result of “stitching strands
a and b and calling the resulting strand c”, as illus-
trated on the right.

In topology, dmab
c is the “internal stitching” of two tubes within a single 2-link,

akin to the “stitching” operation that combines two strands of an ordinary
tangle into a single “longer” one. In Lie theory, it is an “internal product” UpIgqbn Ñ
UpIgqbpn´1q which “merges” two factors within UpIgqbn.

1 32

�d∆2

2122

1 32”2’

(7) Given D P AwpSq, given a P S, and given b, c R Sza,
D�d∆a

bc is the result of “doubling” strand a, calling the
resulting “daughter strands” b and c, and summing over
all ways of lifting the arrows that were connected to a to either b or c (so if there are k

arrows connected to a, D�d∆a
bc is a sum of 2k diagrams).

AT
In topology, d∆ is the operation of “doubling” one component in a 2-link.
In Lie theory, it is the co-product ∆: UpIgq Ñ UpIgqb2 acting on the a

factor in UpIgqbS, extended by the identity acting on all other factors. In [AT], it is the
coface maps of [AT, Example 3.14].

(8) Finally, the operation dσa
b : ApSq Ñ ApSztau \ tbuq does nothing but renaming the

strand a to b (assuming a P S and b R Sztau). 2.2

We note that the product operation pD1, D2q ÞÑ D1 ˚ D2 can be implemented using the
union operation \, the stitching operation dm, and some renaming — namely, if S̄ “ tā : a P
Su is some set of “temporary” labels disjoint from S but in a bijection with S, then

D1 ˚ D2 “

˜

D1 \

˜

D2�
ź

a

dσa
ā

¸¸

�
ź

a

dmaā
a . (2)

Therefore below we will sometimes omit the implementation of pD1, D2q ÞÑ D1D2 provided
all other operations are implemented.

We note that AwpSq is a co-algebra, with the co-product lpDq, for a diagram D rep-
resenting an element of AwpSq, being the sum of all ways of dividing D between a “left
co-factor” and a “right co-factor” so that connected components of DzpÒˆSq (D with its
skeleton removed) are kept intact (compare with [BN1, Definition 3.7]).

Definition 2.3. An element Z of AwpSq is “group-like” if lpZq “ Z b Z. We denote the
set of group-like elements in AwpSq by Aw

exppSq.

7The letter S is used here for both “a set of strands” and “an operation similar to an antipode”. Hopefully
no confusion will arise.

8

We leave it for the reader to verify that all the operations defined above restrict to oper-
ations Aw

exp Ñ Aw
exp.

In topology, l is the operation of “cloning” an entire 2-link. It is not to be confused
with d∆; one dimension down and with just one component, the pictures are:

b d∆l

AT In [AT], l is the co-product of Ûppa ‘ tderq ˙ trq and moding out by wheels, Aw
exp is

TAut.

In Lie theory, l is not the co-product ∆: UpIgq Ñ UpIgqb2. Rather, given two finite
dimensional Lie algebras g1 and g1, l corresponds to the map

l : UpIpg1 ‘ g2qqbS Ñ UpIg1qbS b UpIg2qbS.

Discussion 2.4. We seek to have efficient descriptions of the elements of Aw
exppSq and efficient

means of computing the above operations on such elements.
Let Aw

primpSq8 denote the set of primitives of AwpSq: these are the elements ζ P AwpSq
satisfying lpζq “ ζ b 1 ` 1 b ζ . Let FLpSq denote the degree-completed free Lie algebra
with generators S, and let CWpSq denote the degree-completed vector space spanned by
non-empty cyclic words on the alphabet S. In [WKO2, Proposition 3.19] we have shown
that there is a short exact sequence of vector spaces

0 Ñ CWpSq Ñ A
w
primpSq Ñ FLpSqS Ñ 0, (3)

where FLpSqS denotes the set of all functions S Ñ FLpSq. Hence Aw
primpSq » FLpSqS ‘

CWpSq (not canonically!). Often in bi-algebras there is a bijection given by ζ ÞÑ eζ between
primitive elements ζ and group-like elements eζ . Hence we may expect to be able to present
elements of Aw

exppSq as formal exponentials of combinations of “trees” (elements of FLpSqS)

and “wheels” (elements of CWpSq)9:

A
w
exppSq „ TWpSq :“ FLpSqS ˆ CWpSq “

"
pλ; ωq :

λ “ ta Ñ λauaPS , λa P FLpSq
ω P CWpSq

*
. (4)

We implement Equation (4) in a more-or-less straightforward way in Section 2.3 and in a
less straightforward but somewhat stronger way in Section 2.4. 2.4

Discussion 2.5. Why are there two presentations for elements of Aw
exp?

Because as we shall see, Aw is a bi-algebra in two ways, using two different products,
yet with the same co-product l. In Aw, the notions “primitive” and “group-like”, whose
definition involves only l, are canonical. Yet the bijection between primitive and group-like
elements, ζ Ø eζ , depends also on the product used within the power-series interpretation
of eζ . Thus there are two different ways to describe the group-like elements Aw

exp of Aw in
terms of its primitives TW.

8
Aw

prim is elsewhere denoted Pw.
9We use the set-theoretic notation “ˆ” rather than the linear-algebraic “‘” in Equation (4) to emphasize
that the two sides of that equation are only expected to be set-theoretically isomorphic. The left-hand-side,
in fact, is not even a linear space in a natural way.

9

The first product on Aw is the stacking product of Equation (1). The second will be
introduced later, in Equations (18) and (42).

Very roughly speaking, Aw is a combinatorial model of “π1 ˙ π2” (with homotopies
replaced by isotopies; see [BN4]). The other product on Aw is the one coming from the

direct product “π1 ˆ π2”.

Very roughly speaking, Aw is a combinatorial model of (tensor powers of a completion
of) UpIgq. By PBW, UpIgq » Upgq b Spg˚q as co-algebras but not as algebras. The

other product on Aw is the one corresponding to the natural product on Upgq b Spg˚q. The
reality is a bit more delicate, though. Aw is only a model of (a small part of) the g-invariant
part of UpIgq, and the co-product l of Aw does not correspond to the co-product ∆ of
UpIgq. 2.5

computations below

C3In computer talk, generators of FLpSq are always single-character “Lyndon words” (e.g. [Re]); in our case
we set x and y to be the single-character words “x” and “y”, and then α, β, and γ to be the Lie series x`rx, ys,
y´ rx, rx, yss, and x`y´2rx, ys (elements of FL are infinite series, in general, but these examples are finite):

Note that as we requested earlier, our example series are printed to degree 4. Note also that they are printed
using “top bracket” xy :“ rx, ys notation, which is easier to read when many brackets are nested.
We then compute rα, βs and verify the Jacobi identity for α, β, and γ:

C4In computer talk:

Fuller output:
[WKO4]/bch.nb

Just to show that we can, here are the lexicographically middle three of the 2,181 terms of the BCH series
in degree 16, along with the time in seconds it took my humble laptop to compute it:

(In a few hours my laptop computed the BCH series to degree 23; in as much as I know, the farthest it was
ever computed. See [BN4, CM].)

10

http://drorbn.net/AcademicPensieve/Projects/WKO4/bch.nb

2.2. Some preliminaries about free Lie algebras and cyclic words. It should be
clear from Discussion 2.4 that free Lie algebras and cyclic words play a prominent role in
this paper. For the convenience of our readers we collect in this section some preliminaries
about about these topics. Almost everything in this section comes either from Alekseev-
Torossian’s [AT], or from [WKO2, BN4], and the detailed proofs of the assertions made here
can be found in these papers.

Note that Lie algebras appear in two distinct roles in this paper. Free Lie algebras
FL appear along with cyclic words CW as the primitives of Aw (Equation (3)). Finite

dimensional Lie algebras g appear only as motivational comments, always marked with a

symbol. As already indicated, elements in Aw, and hence elements of FL and of CW
can represent “universal” formulas that make sense in any finite dimensional Lie algebra
g. Hence part of our discussion of FL and CW is a discussion of things that make sense
universally for all finite dimensional Lie algebras.

Recall that FLpSq denotes the graded completion of the free Lie algebra over a set of
generators S, all considered to have degree 1. In the case when S “ tx1, . . . , xnu, Alekseev
and Torossian [AT] denote this space lien.

C3

A noteworthy element of FLpx, yq is the Baker-Campbell-Hausdorff series,C4

BCHpx, yq :“ logpexeyq “ x ` y `
rx, ys

2
`

rx, rx, yss ` rrx, ys, ys

12
`

Recall also that CWpSq (trn, in [AT]) denotes the graded completion of the vector space
spanned by non-empty cyclic words in the alphabet S. Our convention is to crown cyclic
words with an “arch”; thus Ŋuvw “ ŊvwuC5. Note that there is a map CWpFLpSqq Ñ CWpSq
by interpreting brackets within elements of FLpSq as commutators and then mapping “long”
words to cyclic words. E.g., Ŕurv, ws “ Ŋuvw ´ Ŋuwv.

We denote by hdeg the operations FL Ñ FL and CW Ñ CW which multiply any degree k

element by hk. In particular, p´1qdeg acts on FL{CW as the identity in even degrees and as
minus the identity in odd degrees.C6

Let derS denote the Lie algebra of all derivations of FLpSq (dern in [AT]). There is a linear
map B : FLpSqS Ñ derS which assigns to every λ “ pλaqaPS P FLpSqS the unique derivation
Bλ for which Bλpaq “ ra, λas for every a P S.10 C7 The image of B is a subalgebra of derS
denoted tderS (tdern in [AT]); the elements of tderS are called “tangential derivations”. The
kernel of B can be identified as the Abelian Lie algebra AS generated by S (an in [AT]),
which is linearly embedded in FLpSqS as the set of all sequences λ : S Ñ FLpSq for which

computations below

C5Cyclic words in computer talk:

C6In computer talk:

11

λa is a scalar multiple of a for every a P S. Thus we have a short exact sequence of vector
spaces

0 Ñ AS Ñ FLpSqS
B
ÝÑ tderS Ñ 0. (5)

The map FLpSqS Q λ “ pλaq ÞÑ
ř

axλa, aya P AS, where xλa, ay is the coefficient of a in λa is
a splitting of the above sequence, and hence FLpSqS » AS ‘ tderS in a canonical manner.

There is a unique Lie bracket r¨, ¨stb (the “tangential bracket”) on FLpSqS which makes (5)
a split exact sequence of Lie algebras, and hence pFLpSqS, r, stbq » AS ‘tderS as Lie algebras.
With r¨, ¨s denoting the ordinary direct-sum bracket on FLpSqS and with the action of Bλ

extended to Bλ : FLpSqS Ñ FLpSqS in the obvious manner, we haveC8

rλ1, λ2stb “ rλ1, λ2s ` Bλ1
λ2 ´ Bλ2

λ1.

The λ ÞÑ Bλ action of pFLpSqS, r, stbq on FLpSq extends to an action on the universal
enveloping algebra of FLpSq, the free associative algebra FApSq on S generators, and then
descends to the vector-space quotient of FApSq by commutators, namely to cyclic words.
Leaving aside the empty word, we find that pFLpSqS, r, stbq acts on CWpSq, and hence also
on TWpSq.C9

There are two ways to assign an automorphism of the free Lie algebra FLpSq to an element
λ P FLpSqS:

(1) One may exponentiate the derivation Bλ to get eBλ : FLpSq Ñ FLpSq.

10Using the notation of [BN4], Bλ “ ´
ř

aPS adλa

a “ ´
ř

aPS adatλau. I apologize for the minus sign which
stems from a bad choice made in [BN4].

computations below

C7An example:

C8For example:

C9We check that up to degree 8, Brλ1,λ2stbpω1q “ rBλ1
, Bλ2

spω1q (for our choice of λ1, λ2, and ω1, both sides
vanish below degree 8):

Note that the comparison operator ” returns a “Boolean Sequence” (BS) rather than a single True/False
value, as the computer has no way of knowing whether two series are equal without computing them up to
a given degree. In our case, we’ve asked for the comparison of lhs with rhs up to degree 8, and the output,
including degree 0, is a sequence of 9 affirmations, summarized as “9 True”.

12

(2) One may define an automorphism Cλ : FLpSq Ñ FLpSq by setting its values on the
generators by Cλpaq :“ eλaae´λa “ ead λaa. We denote the inverse of Cλ by RC´λ

and note that it is not C´λ.

AT In [AT], (1) corresponds to the presentation of elements of the automorphism group
TAutn as exponentials of elements of its Lie algebra tdern, while (2) corresponds to its

presentation in terms of “basis conjugating automorphisms” xi ÞÑ g´1
i xigi where gi “ e´λi .

Compare with [AT, Section 5.1].
The following pair of propositions, which we could not find elsewhere, relates these two

automorphisms:

Proposition 2.6. Given λ P FLpSqS, let t be a scalar-valued formal variable and let Γtpλq P
FLpSqS be the (unique) solution of the ordinary differential equation

Γ0pλq “ 0 and
dΓtpλq

dt
“ λ�e´tBλ�

ad Γtpλq

eadΓtpλq ´ 1
. (6)

Then e´tBλ “ CΓtpλq.C10 (7)

Proof. The two sides Lt and Rt of Equation (7) are power-series perturbations of the
identity automorphism of FLpSq. More fully, Lt can be written Lt “

ř
dě0 t

dLpdq where
Lpdq : FLpSq Ñ FLpSq raises degrees by at least d (and so the sum converges), and where
Lp0q is the identity. Rt can be written in a similar way. We claim that it is enough to prove
that

At :“ p
dLt

dt
q�L´1

t “ p
dRt

dt
q�R´1

t “: Bt. (8)

Indeed, if otherwise Lt ‰ Rt, consider the minimal d for which Lpdq ‰ Rpdq. Then d ą 0
and the least-degree term in At ´Bt is the degree d´ 1 term, which equals dtd´1Lpdq�L´1

t ´
dtd´1Rpdq�R´1

t “ dtd´1pLpdq ´ Rpdqq�L´1
t ‰ 0 (the last equality is because L´1

t “ R´1
t to

degree d), contradicting Equation (8). Note that in fact we have shown that if At “ Bt to
degree d in t, then Equation (7) holds to degree d ` 1.

computations below

C10We verify that the computer-calculated Γtpλq satisfies the ODE in (6) and then that the operator equal-
ity (7) holds, at least when evaluated on “our” γ:

13

To compute Bt we need the differential of Cµ (at µ “ Γtpλq) and the chain rule. The
differential of Cµ is quite difficult; fortunately, we have computed it in the case where
µ “ pu Ñ γq is supported on just one u P S, in [BN4, Lemma 10.7]. Both the result and its
proof generalize simply, and so we have

δCµ “ ´B

"
δµ�

eadµ ´ 1

adµ
�RC´µ

*
�Cµ,

where we have written Btmessu instead of Bmess because mess is too big to fit as a subscript.
Hence by the chain rule and then by Equation (6),

Bt “ ´B

"
dΓtpλq

dt
�
ead µ ´ 1

adµ
�RC´µ

*ˇ̌
ˇ̌
µ“Γtpλq

“ ´B

λ�e´tBλ�RC´Γtpλq

(
“ ´Bλ�e´tBλ�RC´Γtpλq.

On the other hand, computing At is a simple differentiation, and we get that At “ ´Bλ. Com-
paring with the line above, we find that if Equation (7) holds to degree d, then Equation (8)
also holds to degree d. But then as we noted, (7) holds to degree d ` 1. As Equation (7)
clearly holds at t “ 0, we find that it holds to all orders. l

Comment 2.7. It is easier (though insufficient) to assume that there is a solution Γtpλq to
Equation (7) and deduce that it must satisfy the differential equation (6): simply differen-
tiate (7) with respect to t and simplify as much as you can allowing yourself to use (7) as
needed within the simplification process. The result is (6), and the steps follow the compu-
tational steps of the above proof rather closely. The actual proof is a bit harder because if
we cannot assume (7) while deriving it, so we have to resort to an inductive process.

Proposition 2.8. As in the previous proposition, let Λtpλq be the (unique) solution of

Λ0pλq “ 0 and
dΛtpλq

dt
“ λ�eBΛtpλq�

adtb Λtpλq

eadtb Λtpλq ´ 1
. (9)

Then Ctλ “ e´BΛtpλq. (10)
computations below

C11We verify that the computer-calculated Λtpλq satisfies the ODE in (9) and then that the operator equal-
ity (10) holds, at least when evaluated on “our” γ:

14

The proof of this proposition is very similar and not even a tiny bit nicer than the proof
of the previous one. So we skip it and instead include a computer verification.C11

As special cases, we denote Γ1pλq by Γpλq and Λ1pλq by Λpλq.
One special case of Cλ deserves to be named:

Definition 2.9. (Compare [BN4, Section 4.2]) Given u P S and γ P FLpSq let Cγ
u denote

the automorphism of FLpSq defined by mapping the generator u to its “conjugate” eγue´γ “
e´ ad γpuq (this is simply Cλ, where λ is the length 1 sequence pu Ñ γq). Let RC´γ

u be the
inverse of Cγ

u (which is not C´γ
u).C12

Last we define/recall a number of functionals FLpSq Ñ CWpSq:

u

uv

γ

tru

uv v

u
`

Definition 2.10. For u P S we let tru : FLpSq Ñ
CWpSq be the sum of all ways of connecting the
head of γ to any of its u-labelled tails and regard-
ing the result as an element of CWpFLpSqq Ñ
CWpSq. The example on the right corresponds
to the specific computation trurrv, us, us “ Őrv, us ` Ŕvp´uq “ ´ŇuvC13

u

uv

u

uv

u

uv

γ

divu `

Definition 2.11. (Compare [BN4, Section 5.1])
For u P S we let divu : FLpSq Ñ CWpSq be the
functional defined schematically by the picture on
the right, which corresponds to the specific compu-
tation divurrv, us, us “ Ŕurv, us` Ŕuvp´uq “ ´ŊuuvC14

(more details in [BN4]). Given also γ P FLpSq, set

Jupγq :“

ż 1

0

ds divupγ � RCsγ
u q � C´sγ

u .C15

computations below

C12Just testing:

C13In computer talk, and using a temporary value for γ, so as not to interfere with its existing value:

C14In computer talk:

15

Definition 2.12. Let div : FLpSq Ñ CWpSq be the Alekseev-Torossian “divergence” func-
tional, as in [AT, Section 5.1], but extended by 0 on AS. In our language, div λ “

ř
uPS divu λ.

Let j : FLpSq Ñ CWpSq is the Alekseev-Torossian “logarithm of the Jacobian”: jpλq “
eBλ´1

Bλ
pdiv λq.C16

Alekseev and Torossian prove in [AT] that j is the unique functional j : FLpSq Ñ CWpSq
satisfying the “cocycle condition” j pBCHtbpλ1, λ2qq “ jpλ1q`eBλ1 jpλ2q, where BCHtb stands
for the BCH formula using the tangential bracket r¨, ¨stb on FLpSqS:

BCHtbpλ1, λ2q “ λ1 ` λ1 `
1

2
rλ1, λ2stb ` . . . ,

and the “initial condition” B
Bǫ
jpǫλq “ div λ.C17

2.3. The lower-interlaced presentation El of Aw
exp. For a finite set S let TWlpSq be

set-theoretically the same as TWpSq “ FLpSqS ˆCWpSq — we only add the “l” subscript to
emphasize that TWl carries an algebraic structure, and that it is different from the algebraic

computations below

C15We quote the implementation of J in FreeLie.m (FL) and, reverting to the “old” γ, compute J1pγq:

FL

C16A quote of the computer-definition, and then div λ and jpλq, computed to degree 5:

FL

C17We verify the cocycle condition and the initial condition. For the latter, we first declare ǫ to be “an
infinitesimal” by declaring that ǫ2 “ 0, and then we verify that jpǫλq “ ǫ divλ:

16

http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m

structure on TWs, which we will study later. Elements of TWlpSq are ordered pairs pλ; ωql,
where λ P FLpSqS, ω P CWpSq, and the subscript l is there only to remind us of the context.

Set

Elpλ; ωql :“ expplλq ˚ exppιωq P A
w
exppSq,

ˆ
“El” for “Exponentiation

after using l”

˙

ω

ω

S

...exp

...exp

λ

λ

Figure 2.13. Elpλ; ωql.

where l : FLpSqS “ AS ‘ tderS Ñ AwpSq is the “lower” Lie em-
bedding11 of trees into AwpSq (see [WKO2, Section 3.2]), where ι
is the obvious inclusion of wheels (“ CWpSq “ trS) into AwpSq,
and where exponentiation is taken using the stacking product (1)
of AwpSq. A pictorial representation of Elpλ; ωql appears on the
right: Reading from the bottom up, we see “exponentially many”
copies of λ (meaning, a sum over n of n copies with coefficient
1{n!). Each λ is a linear combination of trees with one head and
many tails, which are attached to the strands in T with the head
below the tails. Each copy of λ appears on the right as a gray
“wizard’s cap” whose tip corresponds to the head of λ, and is
therefore tipped downward. Above expplλq is our symbolic rep-
resentation of exppιωq.

Figure 2.13 also explains the name “interlaced” for this presentation, for in it heads and
tails are interlaced along the strands of S (contrast with Es in Figure 2.19 and with Ef in
Figure 2.28).

It follows from the results of [WKO2, Section 3.2] that the map El : TWlpSq Ñ Aw
exppSq

is a set-theoretic bijection. Hence the operations of Definition 2.2 induce corresponding
operations on TWlpSq. We list these within the (long!) definition-proposition below.

Definition-Proposition 2.14. The bijection El intertwines the operations defined below
with the operations in Definition 2.2:C18

(1) If S1 X S2 “ H and pλi; ωiql P TWlpSiq,

pλ1; ω1qlpλ2; ω2ql “ pλ1; ω1ql\pλ2; ω2ql :“ pλ1 \ λ2; ω1 ` ω2ql, (11)

11We could have equally well used the “upper” Lie embedding u, setting Eupλ; ωqu :“ exppιωq exppuλq, with
only minor modifications to the formulas that follow.

computations below

C18We cannot verify Definition-Proposition 2.14 per se on the computer, as we have no direct computer
implementation of Aw . Indeed, the whole point of this paper is to provide an implementation of Aw by
means of El (and later, Es and Ef). Instead, we verify below that many properties of operations on Aw (the
associativity of the stacking product, etc.) indeed hold for their El implementations. We start by setting the
values of some “sample” elements on which we will run our tests (note that on the computer we represent
pλ; ωql as El[λ,ω]):

17

12 A not-so-simple description would be to use the language of the factored presentation of Section 2.4,
converting back and forth using the results of Section 2.5.

computations below

C19We quote the El implementation of the stacking product from AwCalculus.m (AC) and verify that it is
associative, at least to degree 8:

AC

C20Example:

C21We quote the computer-definition of dA, compute an example, verify that dA is an involution, and then
that it is an anti-homomorphism relative to the stacking product:

AC

18

http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m

where \ : FLpS1q
S1 ˆ FLpS2q

S2 Ñ FLpS1 \ S2qS1\S2 is the union operation of functions
(or, in computer speak, the concatenation of associative arrays) followed by the inclusions
FLpSiq Ñ FLpS1 \S2q, and ω1 `ω2 is defined using the inclusions CWpSiq Ñ CWpS1 \
S2q.

(2) If pλi; ωiql P TWlpSq,

pλ1; ω1ql˚pλ2; ω2ql :“ pBCHtbpλ1, λ2q; e
´Bλ2 pω1q ` ω2ql.

C19 (12)

(3) If pλ; ωql P TWlpSq and a P S,

pλ; ωql�dη
a :“ ppλzaq�pa Ñ 0q; ω�pa Ñ 0qql, (13)

where λza denotes the function λ with the element a removed from its domain (in com-
puter talk, “remove the key a”), and pa Ñ 0q denotes the substitution a “ 0, which is
defined on both FL and CW and maps FLpSq Ñ FLpSzaq and CWpSq Ñ CWpSzaq.C20

(4) For a single a P S, I don’t know a simple description of the operation dAa in El lan-
guage12. Yet the composition dA :“ dAS :“

ś
aPS dA

a is manageable: (j is defined in
Definition 2.12)

pλ; ωql�dA
S :“ p´λ; eBλpωq ´ jpλqql.

C21 (14)

(5) For a single a P S, I don’t know a simple description of the operation dSa in El lan-
guage12. Yet the composition dS :“ dSS :“

ś
aPS dS

a is manageable:

pλ; ωql�dS
S :“ p´λ�p´1qdeg; peBλpωq ´ jpλqq�p´1qdegql.

C22 (15)

(6) I don’t know a simple description of the operation dmab
c in El language

12. Yet note that
Equation (2) implies that “applying dm to all strands” is manageable, being the stacking
product described in (12).

(7) We have

pλ; ωql�d∆
a
bc :“ ppλzaq \ pb Ñ λa, c Ñ λaq�pa Ñ b ` cq; ω�pa Ñ b ` cqql, (16)

where pa Ñ b` cq denotes the obvious replacement of the generator a with the sum b` c.
It represents morphisms FLpSq Ñ FLppSzaq \ tb, cuq, FLpSqH Ñ FLppSzaq \ tb, cuqH

(for any set H), and CWpSq Ñ CWppSzaq \ tb, cuq.C23

computations below

C22An example:

C23The computer-definition, an example, and then a verification that d∆ is homomorphism relative to the
stacking product:

AC

19

http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m

(8) We have

pλ; ωql�dσ
a
b :“ pppλzaq \ pb Ñ λaqq�pa Ñ bq; ω�pa Ñ bqql, (17)

where pa Ñ bq denotes the obvious “generator renaming” morphisms FLpSq Ñ FLppSzaq\
bq, FLpSqH Ñ FLppSzaq \ bqH (for any set H), and CWpSq Ñ CWppSzaq \ bq.

Proof. Equations (11), (13), (16), and (17) are trivial and were stated only to introduce
notation. The tree-level part of Equation (12) follows from the fact that l is a morphism of
Lie algebras (see within the proof of [WKO2, Proposition 3.19]). The wheels part of Equa-
tion (12) follows from [WKO2, Remark 3.24]. Equation (14) follows from the observation
that dAS is the adjoint map ˚ of [WKO2, Definition 3.26] and then from [WKO2, Propo-
sition 3.27]. Equation (15) is the easily-established fact that on Aw, dSS “ p´1qdegdAS.

l

Note that the absence of simple descriptions of dAa, dSa, and dmab
c in the El language

is fatal for its applicability to knot theory, as these operations are needed within the
computation of knot and tangle invariants. See Section 3.1.

AT Comment 2.15. Let πT : TWpSq Ñ FLpSqS denote the projection onto the first factor
(“trees”) of TWpSq “ FLpSqS ˆ CWpSq, and recall that up to a minor central factor,

pFLpSqS, tbq is tderS. Recall also that tderS is the Lie algebra of TAutS, and that elements
of tderS represent elements of TAutS by exponentiation. With this in mind, the tree part of
Equation (12) becomes the product of TAutS. In other words, the diagram

TWlpSq ˆ TWlpSq
˚ //

pπT�expqˆpπT�expq

��

TWlpSq

πT�exp

��
TAutS ˆTAutS

mult. // TAutS

is commutative. Hence the El presentation is valuable for [AT] as many of the [AT] equations
involve the group structure of TAutS.

2.4. The factored presentation Ef of Aw
exp and its stronger pre-

cursor Es. Following [BN4], in the “factored” presentation Ef of Aw
exp

computations below

20

arrow heads are treated separately from arrow tails in diagrams such
as the one on the right. This presentation of Aw

exp is more complicated
than the previous one, yet it is also more powerful, and in some sense, it
is made of simpler ingredients. We first enlarge the collection of spaces
tAwpSqu to a somewhat bigger collection tAwpH ;T qu on which a larger
class of operations act. The new operations are more “atomic” than
the old ones, in the sense that each of the operations of Definition 2.2 is a composition of
2-3 of the new operations. The advantage is that the new operations all have reasonably
simple descriptions as operations on the group-like subsets tAw

exppH ;T qu (the “split” presen-
tation Es below), and hence even the few operations whose description in the El presentation
was omitted in Definition-Proposition 2.14 can be fully described and computed in the Ef

presentation.
A sketch of our route is as follows: In Section 2.4.1, right below, we describe the spaces

tAwpH ;T qu. In Section 2.4.2 we describe the zoo of operations acting on tAwpH ;T qu.
Section 2.4.3 is the tofu of the matter — we describe the operations of the previous section
in terms of spaces tTWspH ;T qu of trees and wheels, whose elements are in a bijection Es

with the group like elements of tAwpH ;T qu. Finally in Section 2.4.4 we explain how the
system of spaces tAwpSqu includes into the system tAwpH ;T qu and how the operations of
the former are expressed in terms of the latter, concluding the description of Ef .

2.4.1. The family tAwpH ;T qu. Let H “ th1, h2, . . .u be some finite set of “head labels” and
let T “ tt1, t2, . . .u be some finite set of “tail labels” (these sets need not be of the same
cardinality). Let AwpH ;T q be AwpH \ T q13 moded out by the following further relations:

‚ If an arrow tail lands anywhere on a head strand (˚1
on the right), the whole diagram is zero.

‚ The CP relation: If an arrow head is the lowest vertex
on a tail strand (˚2 on the right), the whole diagram
is zero. (As on the right, we indicate the bottom ends
of tail strands with bullets “‚”).

“ 0

hi

“ 0˚1

˚2

ti

13 We will often use sets of labels H and T that are not disjoint. The notation “H\T ” stands for the union
of H and T , made disjoint by brute force; for example, by setting H\T :“ pthuˆHqYpttuˆT q, where h and
t are two distinct labels chosen in advance to indicate “heads” and “tails”. In practise we will keep referring
to the images of the elements of H within H \ T as hi rather than ph, hiq, and likewise for the ti’s. We will
mostly avoid the confusion that may arise when H X T ‰ H by labelling operations as “head operations”
which will always refer to labels in H ãÑ H\T or as “tail operations”, when referring to labels in T ãÑ H\T .

21

TH

Comment 2.16. Using these two relations one may show that AwpH ;T q is
isomorphic to the set of arrow diagrams in which only arrow heads land on
the head strands (obvious, by the first relation) and in which only arrow tails

meet the tail strands (use
ÝÝÝÑ
STU2 to slide any arrow head on a tail strand until

it’s near the bottom, then use the second relation; see also Comment 2.1), still

modulo
ÝÑ
AS,

ÝÝÝÑ
IHX,

ÝÝÝÑ
STU1 and TC. Thus a typical element of AwpH ;T q is

shown on the right.

In topology (see [BN4]), head strands correspond to “hoops”, or based knotted circles,
and tail strands correspond to balloons, or based knotted spheres. The two relations

and the isomorphism above are also meaningful [BN4].

In Lie theory head strands represent Upgq and tail strands represent the (right) Verma
module UpIgq{gUpIgq » Upg˚q » Spg˚q. The evaluation g˚ Ñ 0 induces a surjection

of UpIgq onto the first of these spaces whose kernel is “any word containing a letter in g˚”,
explaining the first relation above. The second relation is the definition of the Verma module.

2.4.2. Operations on tAwpH ;T qu.

Definition 2.17. Just as in Definition 2.2, there are several operations that are defined on
AwpH ;T q. In brief, these are:

(1) A union operation \ : AwpH1;T1q b AwpH2;T2q Ñ AwpH1 \ H2;T1 \ T2q, defined when
H1 XH2 “ T1 XT2 “ H, with obvious topological (compare with “˚” of [BN4, Figure 5])
and Lie theoretic meanings. (The symbol \ is sometimes omitted: D1D2 :“ D1 \ D2).

(2) A “stacking” product # can be defined on AwpH ;T q by stitching all pairs of equally-
labelled head strands and then merging all pairs of equally-labelled tail strands in a pair
of diagrams D1, D2 P AwpH ;T q. The “merging” of tail strands is described in more
detail as the operation tm below. In fact, it may be better to define # using a formula
similar to Equation (2) and the operations hm, tm, hσ, and tσ defined below:

D1#D2 “

˜

D1 \

˜

D2�
ź

xPH

hσx
x̄�

ź

uPT

tσu
ū

¸¸

�
ź

xPH

hmxx̄
x �

ź

uPT

tmuū
u . (18)

In topology, # is the stitching of hoops followed by the merging of balloons; this
is not the same as the stitching of knotted tubes. In Lie theory, # corresponds

to the componentwise product of UpgqbH b Spg˚qbT . Even when H and T are both
singletons, this is not the same as the product of UpIgq, even though linearly UpIgq »
Upgq b Spg˚q.

(3) If x P H and u P T , the operations hηx and tηu drop the head-strand x or the tail-strand
u similarly to the operation dηa of Definition 2.2.

(4) hAx reverses the head-strand x while multiplying by a p´1q factor for every arrow head
on x. tAu is the identity.

(5) hSx “ hAx while tSu multiplies by a factor of p´1q for every arrow tail on u (by TC,
there’s no need to reverse u).

(6) The operation hmxy
z is defined similarly to dmab

c of Definition 2.2. Likewise for tmuv
w ,

except in this case, the tail-strands u and v must first be cleared of all arrow-heads using
the process of Comment 2.16. Once u and v carry only arrow-tails, all these tail can be

22

put on a new tail-strand w in some arbitrary order (which doesn’t matter, by TC). Note
that tmuv

w “ tmvu
w , so tm is “meta-commutative”.

In topology, tmuv
w is the “merging of balloons” operation of [BN4, Section 3.1],

which in itself is analogues to the (commutative) multiplication of π2.
In Lie theory, tmuv

w is the product of Spg˚q. Note that tail strands more closely
represent the Verma module UpIgq{gUpIgq whose isomorphism with Spg˚q involves

“sliding all g-letters in a UpIgq-word to the left and then cancelling them”. This is anal-
ogous to the process of cancelling arrow-heads which is a pre-requisite to the definition
of tmuv

w .

(7) h∆x
yz and t∆u

vw are defined similarly to d∆a
bc.

(8) hσx
y and tσu

v are defined similarly to dσa
b .

(9) New! Given a tail u P T , a “new” tail label v R T zu and a head x P H the opera-
tion thmux

v : AwpH ;T q Ñ AwpHzx; pT zuq \ tvuq is the obvious “tail-strand head-strand
stitching” — similarly to dmab

c , stitch the strand u to the strand x putting u before x,
and call the resulting “new” strand v. Note that for this to be well defined, v must be
a tail strand.14

In practise, thmux
v is never used on its own, but the combination h∆x

xx1�thmux1

u (where
x1 is a temporary label) is very useful. Hence we set thaux : AwpH ;T q Ñ AwpH ;T q (“tail
by head action on u by x”) to be that combination. In words, this is “double the strand
x and put one of the copies on top of u”.15

In topology, tha is the action of hoops on balloons as in [BN4, Section 3.1],
which is similar to the action of π1 on π2. In Lie theory, it is the right action of

Upgq on the Verma module UpIgq{gUpIgq, or better, the action of Upgq on Spg˚q induced
from the co-adjoint action of g on g˚. 2.17

Exercise 2.18. In the cases when we did not state the topological or Lie theoretical
meaning of an operation in Definition 2.17, find what it is.

2.4.3. Group-like elements in tAwpH ;T qu. For any fixed finite sets H and T there is a co-
product l : AwpH ;T q b AwpH ;T q defined just as in the case of AwpSq (Definition 2.3),
and along with the product # (and obvious units and co-units), AwpH ;T q is a graded con-
nected co-commutative bi-algebra. Hence it makes sense to speak of the group-like elements
Aw

exppH ;T q within AwpH ;T q, and they are all #-exponentials of primitives in AwpH ;T q.
The primitives Aw

primpH ;T q in AwpH ;T q are connected diagrams and hence they are trees
and wheels. As in Comment 2.16, the trees must have their roots on head strands and their
leafs on tail strands, and the wheels must have all their “legs” on tail strands. As tails
commute, we may think of the trees as abstract trees with leafs labelled by labels in T and
roots in H , and the wheels are abstract cyclic words with letters in T . Hence canonically
Aw

primpH ;T q » FLpT qH ‘CWpT q and hence there is a bijection (called “the split presentation
Es”)

Es : TWspH ;T q :“ FLpT qH ‘ CWpT q
„

ÝÑ A
w
exppH ;T q (19)

14Note also that the analogous operation htmxu
v “put x before u to get a tail v” is 0 and hence we can safely

ignore it, and that thmxu
y and htmxu

y , defined in the same way as thmux
v and htmxu

v except to produce a
head strand y, are not well defined because they do not respect the CP relation.
15Note that thmux

v “ thaux�hηx�tσu
v so we lose no generality by considering thaux instead of thmux

v .
23

defined on an ordered pair pλ; ωqs in TWspH ;T q by

pλ; ωqs ÞÑ exp# pespλ;ωqq , (20)

ω

ω

... exp

...
λ

λ
exp

H T

Figure 2.19. Espλ; ωqs.

where espλ;ωqs is the sum over x P H of planting λx with its root
on strand x and its leafs on the strands in T so that the labels
match but at an arbitrary order on any T strand, plus the result
of planting ω on just the T strands so that the labels match but
at an arbitrary order on any T strand. A pictorial representation
of Espλ; ωqs, using the same visual language as in Figure 2.13,
appears on the right.

It is easy to verify that the operations in Definition 2.17 in-
tertwine l and hence map group-like elements to group-like el-
ements and hence they induce operations on TWspH ;T q. These
are summarized within the following definition-proposition.

Definition-Proposition 2.20. The bijection Es intertwines the operations defined below
with the operations in Definition 2.17:16 C24

16Here we no longer state conditions such as H1 X H2 “ H, u P T , x P H . They are the same as in
Definition 2.17, and more importantly, they are “what makes sense”.

computations below

C24We quote from AwCalculus.m only the most interesting implementations — of \ (21), of hm (29), of
tm (30), and of tha (35). Then we set the values of two “sample” elements in the Es presentation (on the
computer we represent pλ; ωqs as Es[λ,ω]):

AC

(Note that the second of sample elements was set to be a random series, with a seed of 0. It is printed only
to degree 2, but it extends indefinitely as a random series.)

24

http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m

(1) pλ1; ω1qspλ2; ω2qs “ pλ1; ω1qs\pλ2; ω2qs :“ pλ1 \ λ2; ω1 ` ω2qs (21)
(2) pλ1; ω1qs#pλ2; ω2qs :“ ppx Ñ BCHpλ1x, λ2xqqxPH ; ω1 ` ω2qs (22)
(3) pλ; ωqs�hη

x :“ pλzx; ωqs (23)
pλ; ωqs�tη

u :“ pλ�pu Ñ 0q; ω�pu Ñ 0qqs (24)
(4) pλ; ωqs�hA

x :“ ppλzxq \ px Ñ ´λxq; ωqs (25)
tAu :“ I (26)

(5) hSx :“ hAx, (27)
pλ; ωqs�tS

u :“ pλ�pu Ñ ´uq; ω�pu Ñ ´uqqs (28)
(6) pλ; ωqs�hm

xy
z :“ ppλztx, yuq \ pz Ñ BCHpλx, λyqq; ωqs (29)

pλ; ωqs�tm
uv
w :“ pλ�pu, v Ñ wq; ω�pu, v Ñ wqqs (30)

(7) pλ; ωqs�h∆
x
yz :“ ppλzxq \ py Ñ λx, z Ñ λxq; ωqs (31)

pλ; ωqs�t∆
u
vw :“ pλ�pu Ñ v ` wq; ω�pu Ñ v ` wqqs (32)

(8) pλ; ωqs�hσ
x
y :“ ppλzxq \ py Ñ λxq; ωqs (33)

pλ; ωqs�tσ
u
v :“ pλ�pu Ñ vq; ω�pu Ñ vqqs (34)

(9) pλ; ωqs�tha
ux :“

`
λ�RCλx

u ; pω ` Jupλxqq�RCλx

u

˘
s
. (35)

Proof. The first 8 assertions (14 operations) are very easy. The main challenge to the
reader should be to gather her concentration for the 14-times repetitive task of unwrapping
definitions. If you are ready to cut corners, only go over (21), (29), (30), (31), and (32).
Let us turn to the proof of the last assertion, Equation (35). That proof is in fact in [BN4],
or at least can be assembled from pieces already in [BN4]. Yet the assembly would be a
bit delicate, and hence a proof is reproduced below which refers back to [BN4] only at one
technical point.

By inspecting the definition of thaux, it is clear that there is some assignment γ ÞÑ Rγ
u

that assigns an operator Rγ
u : FLpT q Ñ FLpT q to every γ P FLpT q and that there is some

functional Ku : FLpT q Ñ CWpT q, for which a version of Equation (35) holds:

Espλ; ωqs�tha
ux “ Es

`
λ�Rλx

u ; pω ` Kupλxqq�Rλx

u

˘
s

(36)

Indeed, thaux acts on Espλ; ωqs by placing a copy of exppλxq at the top of the tail strand
u, and then re-writing the result without having any heads on strand u so as to invert Es

back again. The re-writing is done by sliding the heads of exppλxq down to the bottom of
strand u, where they cancel by CP . Every time a head slides past a tail we get a contribution
from

ÝÝÝÑ
STU2. Sometimes a head of a λx will slide against a tail of another λx, whose head

will have to slide down too, leading to a rather complicated iterative process. Nevertheless,
these contributions are the same for every tail on strand u, namely for every occurrence of
the variable u in FLpT qH and/or in CWpT q. This explains the terms λ�Rλx

u and ω�Rλx
u in

Equation (36). We note that the degree 0 part of the operator Rλx
u is the identity, and hence

it is invertible.
But yet another type of term arises in the process — sometimes a head of some tree

will slide against a tail of its own, and then the contribution arising from
ÝÝÝÑ
STU2 will be a

wheel. Hence there is an additional contribution to the output, some Lupλxq which clearly
can depend only on u and λx. Using the invertibility of Rλx

u to write Lupλxq “ Kupλxq�Rλx
u

we completely reproduce Equation (36).
We now need to show that Rγ

u and Kupγq are RCγ
u and Jupγq of Definitions 2.9 and 2.11.

Tracing again through the discussion in the previous two paragraphs, we see that at any fixed
degree, Rγ

u and Kupγq depend polynomially on the coefficients of γ, and hence it is legitimate
25

to study their variation with respect to γ. It is also easy to verify that R0
u “ RC0

u “ I and
that Kup0q “ Jup0q “ 0, and hence it is enough to show that, with an indeterminate scalar
τ ,

d

dτ
Rτγ

u “
d

dτ
RCτγ

u and
d

dτ
Kupτγq “

d

dτ
Jupτγq. (37)

Let us compute the left-hand-sides of the above equations. If τ is an infinitesimal (so
τ 2 “ 0), or more precisely, computing the above left-hand-sides at τ “ 0, we can re-trace
the process described in the two paragraphs following Equation (36) keeping in mind that

with λx “ τγ the
ÝÝÝÑ
STU2 relation can only by applied once (or else terms proportional to τ 2

will arise). The result is

d

dτ
Rτγ

u

ˇ̌
ˇ̌
τ“0

“ adγu and
d

dτ
Kupτγq

ˇ̌
ˇ̌
τ“0

“ divupγq, (38)

where adγ
u : FLpT q Ñ FLpT q is the derivation which maps the generator u of FLpT q to rγ, us

and annihilates all other generators of FLpT q (compare [BN4, Definition 10.5]) and where
divupγq is the same as in Definition 2.11.

Moving on to general τ , we note that the operations hm and tha satisfyC25

hmxy
z �thauz “ thaux�thauy�hmxy

z (39)

(stitching strands x and y and then stitching a copy of the result to u is the same as stitching
a copy of x to u, then a copy of y, and then stitching x to y; compare [BN4, Equation (6)]).
Applying the operators on the two sides of Equation (39) to Espλ; ωq (assuming H and T

are such that it makes sense), then expanding using (29) and (36), and then ignoring the
wheels in the resulting equality, we find that Ru satisfies

RBCHpλx,λyq
u “ Rλx

u �Rλy�R
λx
u

u (40)

(compare [BN4, Equation (16)]). Similarly, looking only at the wheel part of (39) we get

KupBCHpλx, λyqq�RBCHpλx,λyq
u “ Kupλxq�Rλx

u �Rλy�R
λx
u

u ` Kupλy�R
λx

u q�Rλy�R
λx
u

u ,

which, composing on the right with R
BCHpλx,λyq
u and using (40), is equivalent to

KupBCHpλx, λyqq “ Kupλxq�Rλx

u ` Kupλy�R
λx

u q�C´λx

u (41)

(compare [BN4, Equation (19)]).
Equations (40) and (41) hold for any λ, and hence for any λx and λy. Specializing to

λx “ τγ and λy “ ǫγ, where ǫ is some new indeterminate scalar, and using the fact that

computations below

C25None should believe without a verification:

26

BCHpτγ, ǫγq “ pτ ` ǫqγ, Equations (40) and (41) become

Rpτ`ǫqγ
u “ Rτγ

u �Rǫγ�Rτγ
u

u and Kuppτ ` ǫqγq “ Kupτγq�Rτγ
u ` Kupǫγ�Rτγ

u q�C´τγ
u .

Now differentiating with respect to ǫ at ǫ “ 0 and using Equation (38) with τ replaced with
ǫ, we get

d

dτ
Rτγ

u “ Rτγ
u �adγ�Rτγ

u
u and

d

dτ
Kupτγq “ divupγ�Rτγ

u q�C´τγ
u .

The first of these equations is the same equation that is satisfied by RCu (see [BN4, Lemma
10.7], with δγ proportional to γ), and hence Ru “ RCu. By a simple change of variables,
Jupτγq “

şτ
0
dt divupγ � RCtγ

u q �C´tγ
u , and hence d

dτ
Jupτγq “ divupγ�RCτγ

u q�C´τγ
u (compare

with the formula for the full differential of J , [BN4, Proposition 10.10]). Comparing with
the above formula for the derivative of Ku, we find that Ku “ Ju. l

2.4.4. The inclusion tAwpSqu ãÑ tAwpH ;T qu. The following definition and proposition im-
ply that there is no loss in studying the spaces AwpH ;T q rather than the spaces AwpSq.

Definition 2.21. Let δ : AwpSq Ñ AwpS;Sq be the composition of the “double every strand”
map

ś
aPS ∆

a
ha,ta : A

wpSq Ñ AwphS \ tSq with the projection AwphS \ tSq Ñ AwpS;Sq (as
an exception to the rule of Footnote 13 we temporarily highlight the distinction between
head and tail labels by affixing them with the prefixes h and t).

h1 h2 h3 t1 t2 t3

δ

1 2 3

D D

Comment 2.22. If D P AwpSq is sorted “heads below
tails” as in Comment 2.1, then δD is D with its arrow
heads placed on the head strands and its arrow tails
placed on the tail strands, as shown on the right.

Proposition 2.23. δ is a (non-multiplicative) vector space isomorphism. The inverse of δ
on D P AwpS;Sq is given by the process

(1) Write D with only arrow heads on the head strands and only arrow tails on the tail
strands. By Comment 2.16 this produces a well-defined element D1 of AwphS \ tSq.

(2) Stitch all the head-tail pairs of strands in D1 by putting each head ahead of its corre-
sponding tail: δ´1D “ D1�

ś
a dm

ha,ta
a .

Proof. δ´1�δ “ I by inspection, and δ�δ´1 is clearly the identity on diagrams sorted to
have heads ahead of tails as in Comment 2.1. l

In topology, δ agrees with the δ of [BN4, Section 2.2]. In Lie theory, it agrees with
the linear (non-multiplicative) isomorphism UpIgq » UpgqbSpg˚q and with similar

isomorphisms considered by Etingof and Kazhdan within their work on the quantization of
Lie bialgebras [EK] (albeit only when the Lie bialgebras in question are cocommutative).

Definition 2.24. The product # of AwpS;Sq induces a new product, also denoted #, on
AwpSq. If D1 and D2 are in AwpSq, set

D1#D2 :“ pδpD1q#δpD2qq�δ´1. (42)

27

D1 D2D2D1

“#

Comment 2.25. With Comment 2.22 in mind,
we see that if D1 and D2 are sorted as in Com-
ment 2.1, then D1#D2 is “heads of D1, then of
D2, then tails of D1, then of D2” (with the last
two parts interchangeable, by TC). The picture is nicer when rotated, as on the right.

See the comments following Discussion 2.5.

The next proposition shows how the operations of defined on the AwpSq-spaces in Defini-
tion 2.2 can be written in terms of the “head and tail” operations of Definition 2.17, thus
completing the description of the Es presentation.

Proposition 2.26. (1) If S1 and S2 are disjoint and D1 P AwpS1q and D2 P AwpS2q, then
δpD1 \ D2q “ δpD1q \ δpD2q.

(2) Let D1, D2 P AwpSq. Then δpD1D2q can be written in terms of δpD1q and δpD2q using
its description in terms of \, dσ, and dm in Equation (2) and using the formulas for
\, dσ, and dm that appear in parts (1), (8), and (6) of this proposition.C26

(3) dηa�δ “ δ�hηa�tηa.
(4) dAa�δ “ δ�hAa�tAa�thaaa.
(5) dSa�δ “ δ�hSa�tSa�thaaa.

(6) dmab
c �δ “ δ�thaab�hmab

c �tmab
c .C26

(7) d∆a
bc�δ “ δ�h∆a

bc�t∆
a
bc.

(8) dσa
b�δ “ δ�hσa

b�tσ
a
b .

Proof. The only difficulty is with items (4)–(6). Item (4) is easier to understand in the
form δ´1�dAa “ hAa�tAa�thaaa�δ´1. Indeed, δ´1 plants heads ahead of tails on strand a.
Applying dAa reverses that strand (and adds some signs). This reversal can be achieved by
reversing the head part (with signs), then the tail part (with signs), and then by swapping
the two parts across each other. The first reversal is hAa, the second is tAa, and the swap

computations below

C26As a sample for the whole proposition, we quote the implementation of dm and verify its meta-
associativity dmab

a �dmac
a “ dmbc

b �dmab
a (compare [BN4, Equation (32)]). We then include our implementa-

tion of the stacking product (item (2) above) without further explanations:

AC

AC

28

http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m

is thaaa followed by δ´1. Item (5) is proven in exactly the same way, and item (6) is

proven in a similar way, where the right hand side traces the schematics pha ta hb tbq
tha
ÝÝÑ

pha hb ta tbq
hm�tm
ÝÝÝÝÑ ppha hbqpta tbqq. l

Discussion 2.27. It is easy to verify that δ : AwpSq Ñ AwpS; Sq is a co-algebra morphism,
and hence it restricts to an isomorphism δ : Aw

exppSq Ñ Aw
exppS; Sq. Therefore Es�δ

´1 is a
bijection between TWspSq :“ TWspS;Sq and Aw

exppSq. Proposition 2.26 now tells us how to
write all the “d” operations of Definition 2.2 as compositions of “h” and “t” operations, and
Definition-Proposition 2.20 tells us how to write these as operations on TWspH ;T q (the H

and T label sets that occur here are always S with one or two labels added or removed).
Hence overall Es�δ

´1, acting on TWspSq, is a complete presentation of Aw
exppSq.

ω

ω

...exp

λ

. .
.

exp

S

λ

Figure 2.28. Ef pλ; ωqs.

Definition 2.29. The “factored” presentation Ef of Aw
exp is the

composition Ef :“ Es�δ
´1. Namely, for a set S of strands, we

define Ef : TWspSq
„

ÝÑ Aw
exppSq by pλ; ωqs ÞÑ Espλ; ωqs�δ

´1 “
exp# plλ ` ιωq. See the illustration on the right.

2.5. Converting between the El and the Ef presentations.

We now have two presentations for elements of Aw
exppSq, and we

wish to be able to convert between the two. This turns out to
involve the maps Γ and Λ of Propositions 2.6 and 2.8.
Definition 2.30. Define a pair of inverse maps Γ: TWlpSq Ñ
TWspSq and Λ: TWspSq Ñ TWlpSq by

Γ: pλ; ωql ÞÑ pΓpλq; ωqs and Λ: pλ; ωqs ÞÑ pΛpλq; ωql.

Theorem 2.31. The left-most triangle in Figure 1.2 commutes. Namely,

El “ Γ�Ef and Ef “ Λ�El. (43)

(All other parts of Figure 1.2 commute by definition).
Before we can prove this theorem we need a few preliminaries. For an element D P Aw

exppSq,
we can define three associated quantities:

‚ The projection of D to the degree 1 part of AwpSq, and especially, the projection πApDq
of the degree 1 part to its “framing” part AS (consisting of self-arrows, that begin and
end on the same strand and point, say, up).

‚ A conjugation automorphism CD of FLpSq, defined as follows. First, embed FLpSq into
AwpS \ t8uq by mapping any generator a P S to a degree 1 diagram in AwpS \ t8uq, the
arrow whose tail is on strand a and whose head is on the new “8” strand and extending
in a bracket-preserving way, using the commutator of the stacking product as the bracket
on AwpS \ t8uq. Then note that FLpSq Ă AwpS \ t8uq is invariant under conjugation
by D and let CD denote this conjugation action.

This is a direct analog of the Artin action of the pure braid groups PuBn / PwBn

on the free group FGpnq.
‚ π

℄

pDq is the result of adding a bullet at the bottom of every strand of D, in the same
sense as in Section 2.4.1. Equivalently, π

℄

“ δ�
ś

aPS hη
a is the composition of δ with

“delete all head strands”. The target space of π
℄

is AwpH;Sq, which is the symmetric
algebra SpCWpSqq generated by wheels.

29

Proposition 2.32. D is determined by the above three quantities πApDq, CD, and π
℄

pDq.
Proof. As in Section 2.3, every D P Aw

exppSq can be written uniquely in the formD “ elλeιω,

where λ P FLpSqS and ω P CWpSq. One may easily verify that π
℄

pDq is ω, that CD is the
exponential of the derivation in tderS corresponding to λ, and that πApDq determines the
part of λ lost by the projection FLpSqS Ñ tderS. l

Proof of Theorem 2.31. For λ P FLpSqS let λ1 “ Γpλq. Comparing Figures 2.13 and 2.28, we
find that the ω parts drop out and we need to prove, schematically, that in Aw

exppSq,

λ1

. .
.

exp λ1“
...exp

λ

λ

A :“ “: B.

A simple degree 1 calculation shows that πApAq “ πApBq “ 0. The CP relation of Sec-
tion 2.4.1 shows that π

℄

pAq “ π
℄

pBq “ 0. Finally, it is easy to verify that CA “ e´Bλ while
CB “ Cλ1

, and hence CA “ CB follows from Proposition 2.6. l

3. Some Computations

3.1. Tangle Invariants.

3.1.1. The General Framework. Recall from [WKO2] that the assignment Zw : ! ÞÑ exppSqP
defined on S-component tangles and taking values in Aw

exppSq (where S denotes an arrow
connecting the upper strand to the lower strand and exponentiation is in a formal sense) de-
fines an invariant of tangles with values in Aw

exppSq. We’d like to compute Zw (more precisely,
its logarithm), in as much as possible, using both the TWlpSq-valued [AT]-presentation El

or using the TWspSq-valued factored presentation Ef (recall Figure 1.2).

We let R`
l pa, bq and R`

s pa, bq denote the value Rpa, bq “ Zw
´
!

a b

¯
of the positive crossing

in TWl and TWs, respectively, and similarly, let R´
l pa, bq and R´

s pa, bq denote the value

R´1pa, bq “ Zw
´
"

b a

¯
of the negative crossing in TWl and TWs, respectively (for both signs

computations below

C27In computer talk, this is

C28Indeed, here’s a computer verification in El, to degree 5:

30

1

12

2
7

3

8

4
11

5

16
10

1514

9

6
13

´ ´ ´ ´

````

817

r

2

g

4

56 b
7

8
1

9

3

Figure 3.1. The knot 817 and the Borromean tangle.

we label the upper strand a and the lower strand b). That is,

Zw
´
!

a b

¯
“ R`

l pa, bq�El “ R`
s pa, bq�Es and Zw

´
"

b a

¯
“ R´

l pa, bq�El “ R´
s pa, bq�Es.

computations below

C29Here it is, to degree 6:

Fuller output:
[WKO4]/817.nb

C30To degree 4, we get

Fuller output:
[WKO4]/Borromean.nb

31

http://drorbn.net/AcademicPensieve/Projects/WKO4/817.nb
http://drorbn.net/AcademicPensieve/Projects/WKO4/Borromean.nb


One may easily verify that R˘
l,spa, bq “ pa Ñ 0, b Ñ ˘a; 0ql,s

C27, and it is a simple exercise

to verify that R satisfies the Yang-Baxter / Reidemeister 3 relation R`
l,sp1, 2q ˚ R`

l,sp1, 3q ˚

R`
l,sp2, 3q “ R`

l,sp2, 3q ˚ R`
l,sp1, 3q ˚ R`

l,sp1, 2qC28.

3.1.2. The Knot 817 and the Borromean Tangle. In this short section we evaluate Zw on the
knot 817 and on the Borromean tangle, both shown in Figure 3.1. An expanded version of
this section appears as [BN4, Sections 6.3 and 6.4].

For the 8-crossing knot 817 we need to take 8 copies of R˘
s with strands labelled 1 through

16 as in Figure 3.1, and then stitch strands 1 to 2, 2 to 3, etcC29. This is done using dm

operations, and hence we cannot use the El presentation.
Similarly for the 6-crossings Borromean tangle we need 6 copies of R˘

s followed by some
stitchingC30. A colourful evaluation of the Borromean tangle appears in [BN4, Section 6.4].

3.2. Solutions of the Kashiwara-Vergne Equations. In [WKO2, Section 4.1] we found
that in order to construct a homomorphic expansion Zw for the class wTF o of orientable
w-tangled foams, defined there, we need to find elements V “ Zwp q P Aw

exppx, yqC31 and

Cap “ Zwp q P Aw
expp xq17 C32 that are required to satisfy the three equations in (44) and (45)

below. Recall from [WKO2, Section 4.4] that these equations are equivalent to equations
considered by Alekseev and Torossian in [AT] (see [WKO2, Equation 14] and [AT, Section
5.3]), and that the latter equations were shown in [AT, Section 5.2] to be equivalent to the
Kashiwara-Vergne equations of [KV].

The purpose of this section is to trace through all that at the level of actual computations.
Let us start by recalling from [WKO2] the equations for V and for Cap. The first of those is

17Cap is called C in [WKO2] and we trust that the other minor notational differences with [WKO2] will

cause no difficulty to the reader. Note that Awp
S

q is AwpSq with CP relations imposed at the tops of the
strands; compare with Section 2.4.1.

computations below

C31For computations, we use the Es presentation for V . As V is presented in TWsptx, yuq, it is of the form
V “ ppx Ñ α, y Ñ βq; γqs, where α, β P FLpx, yq and γ P CWpx, yq, and where the coefficients of α, β, and
γ, what we call the αs, the βs, and the γs, will be determined later. The first line below sets α, β, and γ to
be series with yet-unknown coefficients, and the second line sets V to be the appropriate combination of α,
β, and γ:

(for a technical reason, in computations we use the symbol V0 to denote V ).
C32Similarly, Cap is presented in TWspxq. As it is made only of wheels, its tree part is 0, or the Lie series
LS[0]. The wheels part of Cap is a series κ P CWpxq whose coefficients are the yet-unknown κs:

32



the R4 equation [WKO2, (11)], V 12Rp12q3 “ R23R13V 12, coming from the picture

Z
“

V

R
R

R

R

R `

V

V

R

“
V

x y z x y z x y z x y z x y x yz z.

In the language of this paper, and denoting the three strands x, y, and z, this equation
becomes

V ˚ pRpx, zq�d∆x
xyq “ Rpy, zq ˚ Rpx, zq ˚ V C33 (44)

The second and the third, “unitarity” and the “cap equation”, [WKO2, (12)] and [WKO2,
(13)], are the equations

V ˚pV�dAq “ 1 in A
wpx, yq and V ˚pCap�d∆x

xyq “ CappCap�dσx
y q in A

wp x,yq, C33 (45)

computations below

C33 The three equations in (44) and (45) are coded as follows:

C34We set the initial condition for α in degree 1, then declare that α, β, γ, and κ are the series which solve
equations R4Eqn, UnitarityEqn, and CapEqn, and then print the values of V and κ (note the ~´1 that comes
with R4Eqn — it indicates a degree shift — R4Eqn in degree k only puts conditions on our unknowns at
degree k ´ 1):

Fuller output:
[WKO4]/VCapSolution.nb

The solutions of (44) and (45) are not unique, and hence occasionally SeriesSolve encounters a coefficient
whose value is not determined by the equations. When this happens its default action is to set the missing
coefficient to 0. In the computation this happened to the coefficient of ux in κ and to the coefficient of xy y in α.
C35Indeed, the series below matches with the computation of κ, above.

33

http://drorbn.net/AcademicPensieve/Projects/WKO4/VCapSolution.nb


which come from the two unzip operations,

andu “

x y x y x y x yy x

u

.

Solving Equations (44) and (45) degree by degree with the initial condition α “ ´y{2` . . .

we find that one possible solution, given in the factored presentation, is

V “ Ef

˜

x Ñ ´
xy

24
`

7 xxxy

5760
´

7 xxy y

5760
`

xy y y

1440
` . . . ,

y Ñ
x

2
´

xy

12
`

xxxy

5760
´

xxy y

720
`

xy y y

720
` . . . ;

´
Ňxy
48

`
Őxxxy
2880

`
Őxxyy
2880

`
Őxyxy
5760

`
Őxyyy
2880

` . . .

¸

s

,

and Cap “ ´Ňxx{96`Őxxxx{11, 520´ Ŕxxxxxx{725, 760`. . .C34. Note that according to [WKO3],

Cap is always
ř

anŇxn, where
ř

an~
n “ 1

4
log

´
~{2

sinh ~{2

¯
C35.

We can also write V in the lower-interlaced presentation:

V “ El

˜

x Ñ ´
xy

24
`

xxy

96
`

xxxy

2880
´

xxy y

480
`

xy y y

1440
` . . . ,

y Ñ
x

2
´

xy

12
`

xxy

96
`

xxxy

960
´

xxy y

320
`

xy y y

720
` . . . ;

´
Ňxy
48

`
Őxxxy
2880

`
Őxxyy
2880

`
Őxyxy
5760

`
Őxyyy
2880

` . . .

¸

s

, C36

(Cap is the same in both presentations).

Recall from [WKO2, Section 4.4] and from Comment 2.15 that the tree part of “our” V ,
taken in the lower-interlaced presentation, is logF 21, where F is the solution of “generalized

computations below

C36We could re-compute V in El by making some simple modifications to the input lines in C33, but it is
easier to use our tools and convert between the two presentations:

34



KV problem” of [AT, Section 5.3] and where the superscript 21 means “interchange the role
of x and y”. Thus using the notation of [AT] a solution to degree 4 of the generalized KV
problem isC37

logF “

˜
y

2
`

xy

12
`

xy y

96
´

xxxy

720
`

xxy y

320
´

xy y y

960
,
xy

24
`

xy y

96
´

xxxy

1440
`

xxy y

480
´

xy y y

2880

¸

.

Next, we’d like to compute a solution of the original Kashiwara-Vergne equations of [KV].
These are the two equations below, written for unknowns f, g P FLpx, yq:

x ` y ´ log eyex “ p1 ´ e´ adxqf ` pead y ´ 1qg, (46)

divx f ` divy g “
1

2
tru

ˆˆ
adx

ead x ´ 1
`

ad x

eadx ´ 1
´

adBCHpx, yq

eadBCHpx,yq ´ 1

˙
puq

˙
. (47)

By tracing the definitions of the comparison map κ which appears in [AT, Theorem 5.8],
we find that a solution pf, gq of the Kashiwara-Vergne equations can be computed from logF
via the formula

pf, gq “
eadplogF q ´ 1

adplogF q
pEplogF qq,

where E denotes the Euler operator, which multiplies every homogeneous element by its
degree. To degree 4, we findC38 that

pf, gq“

˜
y

2
`

xy

6
`

xy y

24
´

xxxy

180
`

xxy y

80
`

xy y y

360
,
xy

12
`

xy y

24
´

xxxy

360
`

xxy y

120
`

xy y y

180

¸

.

computations below

C37The more authoritative version, of course, is the one printed directly by the computer:

C38With higher authority:

We can then verify that pf, gq indeed satisfy Equations (46) and (47), at least to degree 9:

35



3.3. The involution τ and the Twist Equation. Alekseev and Torossian [AT, Sec-
tion 8.2] construct an involution τ on the set SolKV of solutions of the Kashiwara-Vergne
equations. Phrased using the language of [WKO2], Alekseev and Torossian define a map
τ : AwpÒ2q Ñ AwpÒ2q by τpV q :“ Rp1, 2qV 21Θ´1{2, where Θs “ est and t “ S `T P AwpÒ2q.
They then prove that τ restricts to an involution of the set of solutions Equations (44)
and (45). It is not known if τ is different from the identity; in other words, it is not known
if every V satisfying (44) and (45) also satisfies the “Twist Equation”

V “ τpV q. (48)

In topology, the Twist Equation is essential for the compatibility between Zu and Zw;
see [WKO2, Section 4.7]. So it is not known if “every Zw is compatible with some Zu”.

Below the dark line we verify that to degree 6, “our” V satisfies the Twist Equation (48)C39.
computations below

Of course, we could have simply solved Equations (46) and (47) directly:

Fuller output:
[WKO4]/KVDirect.nb

(To the degree shown, the results are the same. But starting at degree 8 they diverge as the solutions are
non-unique.)
C39We define Θl[x,y,s] to be est in the El presentation in a straightforward manner, then convert it to
the Es presentation, and then print its value in both the El and Es presentations:

This done, the computation of τpV0q and the verification that it is equal to V0 to degree 6 s routine:

36

http://drorbn.net/AcademicPensieve/Projects/WKO4/KVDirect.nb


Following that, we reproduce the results of Albert, Harinck, and Torossian [AHT], who
studied the linearizations

rx,As ` ry, Bs “ 0 and divxA ` divy B “ 0 with A,B P FLpx, yq (49)

of Equations (46) and (47) (which are equivalent to (44) and (45)), and the linearization of
Equation (48),

Apx, yq “ Bpy, xq. (50)

We findC40 that up to degree 16, the dimensions of the spaces of solutions of (49) and of
(49)^(50) are the same and are given by the following table:

computations below

C40We solve for series A and B satisfying (49). These equations are linear, so the printed solution is 0. Yet
we store messages produced by LinearSolve in a stream called msgs. As LinearSolve progresses, it outputs
messages detailing which coefficients were set in an arbitrary manner in each degree, and the dimension of
the space of solutions in each degree can be read from that information:

Next, we read the stream msgs, just to explore its format:

Next we compute A to degree 12, and read only the dimensions information contained in msgs:

Fuller output:
[WKO4]/dims.nb

Finally we do the same, but now adding Equation (50):

Fuller output:
[WKO4]/dims1.nb

37

http://drorbn.net/AcademicPensieve/Projects/WKO4/dims.nb
http://drorbn.net/AcademicPensieve/Projects/WKO4/dims1.nb


degA,B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dimension 1 0 0 0 0 0 0 1 0 1 1 2 2 3 3 5

(51)

Assuming that every solution of the KV equations to degree k can be extended to a
solution at all degrees (and similarly for KV^Twist)18, the above table shows the number
of degrees of freedom for the solutions of KV (and/or KV^Twist), in each degree.

3.4. Drinfel’d Associators. It pains me to say so little about Drinfel’d associators, but
this is a computational paper and everything we need about associators was already said
elsewhere; e.g., in Drinfel’d’s original papers [Dr1, Dr2], in my [BN2, BN3], and in earlier
papers in this series [WKO2, WKO3]. Hence here I will only recall the few things that are
necessary in order to understand the computations below.

Recall that the Drinfel’d-Kohno algebra tn is the completed graded Lie algebra with degree
1 generators ttij “ tji : 1 ď i ‰ j ď nu and relations rtij, tkls “ 0 when i, j, k, l are distinct
(“locality relations”) and rtij ` tik, tjks “ 0 when i, j, k are distinct (“4T relations”)C41. For
any fixed 2 ď k ď n the k ´ 1 elements ttik : 1 ď i ă ku form a free subalgebra FLk´1 of tn,
and tn is an iterated semi-direct product of these subalgebras:

tn – pp. . . pFL1 ˙ FL2q ˙ . . .q ˙ FLn´2q ˙ FLn´1. (52)

Hence as a vector space, tn has a basis with elements ordered pairs pk, wq, where 2 ď k ď n

and w is a Lyndon word in the letters t1, . . . , k´1u (which really stand for tt1k, . . . , tk´1,ku)C42.
The collection ttnu of all Drinfel’d-Kohno algebras forms an “operad” (e.g. [Fr]). We only

need to mention a part of that structure here: that for any n and m, there are many maps
tn Ñ tm. Namely, whenever tsiu

n
i“1 is a collection of disjoint subsets of t1, . . . , mu (some of

18I am not aware that this was ever proven for KV (and/or KV^Twist), yet a similar result holds for
Drinfel’d associators; see [Dr1, Dr2, BN2, BN3].

computations below

C41We verify these relations, using obvious notation:

C42Hence for example, rt13, t12s “ ´rt13, t23s (the bracket of a generator of FL3 with the generator of FL2 is
an element of FL3). In computer speak, this is

Note that the head DK represents “a basis element in a Drinfel’d-Kohno algebra”, and that the Lyndon word
12 becomes rt13, t23s when interpreted in FL3 Ă t3.
We could make the last output a bit friendlier by turning it into a “Drinfel’d-Kohno Series” (DKS):

38



which may be empty), we have a morphism of Lie algebras Ψ ÞÑ Ψs1,...,sn mapping tn to tm,
and defined by its values on the generators of tn as follows:

ptijq
s1,...,sn :“

ÿ

αPsi, βPsj

tαβ .
C43

Note also that by regarding elements of tn as formal exponentials and using the BCH
product each tn also acquires a (non-commutative) group structure.C44 By convention, when
we think of tn as a group, we refer to it as “exp tn”.

We are finally in position to recall the definition of a Drinfel’d associator. With R “
et12{2 P exp t2, a Drinfel’d associator is an element Φ P exp t3 which satisfies the “unitarity
condition” (53), the pentagon equation (54), and the hexagon equations (55):

Unitarity : Φ321 “ Φ´1, (53)

$ : Φ ¨ Φ1,23,4 ¨ Φ2,3,4 “ Φ12,3,4 ¨ Φ1,2,34, (54)

9˘ : pR˘1q12,3 “ Φ ¨ pR˘1q2,3 ¨ pΦ´1q1,3,2 ¨ pR˘1q1,3 ¨ Φ3,1,2. (55)

A surprising result by Furusho [Fu] (see also [BND1]) states that in the context of exp tn
the hexagon equations follow from unitarity and the pentagon, provided Φ is initialized to
degree 2 by Φ “ exp prt13, t23s{24 ` higher termsq.C45

V

V

ΦV “

V�dA

V�dA

3.5. Associators in Aw. We know from [AT, Section 1] that a certain com-
bination of four copies of V makes a solution of the pentagon equation, with
values in tder3. In the language of [WKO2], this is the statement that V is

computations below

C43As an example we repeat a single evaluation of a map t4 Ñ t9 twice. First using a complete and somewhat
cumbersome notation, and then using a shortened notation that works only if all indices are single-digit:

C44For example, in t3 the elements t12 and t23 do not commute, and hence the product et12{2et23{2 is
messy. Yet by a 4T relation the elements t12 and pt12q12,3 “ t13 ` t23 do commute, and hence the product

et12{2
`
et12{2

˘12,3
is much simpler:

C45Here’s an associator Φ0, computed to degree 6. The data file [WKO4]/Phi.nb contains a computation of
an associator to degree 10, higher than was previously computed [BN2, Br].

39

http://drorbn.net/AcademicPensieve/Projects/WKO4/Phi.nb


the Zw-value of a vertex, that four vertices can make a tetrahedron, and that
the Zw-value ΦV of a tetrahedron is an associator in Aw (see the figure on the
right). Specifically,

ΦV “ pV�dAq12,3pV�dAq1,2V 2,3V 1,23, C46

computations below

Fuller output:
[WKO4]/Phi.nb

To be on the safe side, we verify that Φ0 satisfies the hexagon equations to degree 6:

C46And here is ΦV , to degree 4:

C47Indeed,

40

http://drorbn.net/AcademicPensieve/Projects/WKO4/Phi.nb


where we use standard notation: V 2,3, for example, means “V with its x strand renamed
2 and its y strand renamed 3” and V 1,23 means “V with its x strand renamed 1 and its y

strand doubled to become strands 2 and 3”. With the language of Definition 2.2, this is
V 2,3 “ V�dσx

2�dσ
y
3 and V 1,23 “ V�dσx

1�d∆
y
23.

ΦV satisfies the pentagon equation.C47 If our V also satisfies the Twist Equation, then
ΦV also satisfies the hexagon equations (though we do not test that here). Finally, Alekseev
and Torossian [AT] prove that if the tree part of ΦV is written as an exponential expplφq of
an element φ of tder3, then in fact φ P sder3, where as in [AT], sdern is the space of “special
derivations in tdern”, the derivations which annihilate the sum of all generators on FLn

C48.

The topological meaning of “φ P sder3” is that one may
perform a sequence of four R4 moves to slide a strand un-

derneath a tetrahedron, as shown on the right.

“

Recall that there is a map α : tn Ñ Aw
primpÒnq (equivalently, α : Uptnq Ñ AwpÒnq), defined

by its values on the generators by sending tij to a sum of a single arrow from strand i to
strand j plus a single arrow from strand j to strand i: tij ÞÑ Si j ` Ti j . Using the map α,

every Drinfel’d associator becomes an associator in Aw.C49

computations below

C48We convert ΦV to the El presentation and take its first (tree) part and call it φ, and then we verify that
rx1, φ1s ` rx2, φ2s ` rx3, φ3s “ 0:

C49Indeed, we define a map DK2Es which takes Drinfel’d-Kohno series to elements of Aw given in the Es

presentation by applying the built-in αMap, adding 0 wheels, and applying the El to Es conversion Γ.
Applying this map to the Drinfel’d associator Φ0 computed before, we get and associators in Aw:

41



In topology, α is the associated graded of the “do nothing” map a which maps ordinary
knots to virtual knots. \ ÞÑ S`T because \ „  „ !´" ÞÑ p!´Pq ` pP´"q „

Q `R „ S `T. See [WKO1, Section 2.5.5] and [WKO2, Section 3.3].

In Lie theory, the existence of α corresponds to the fact that the invariant metric
on Ig “ g ˙ g˚ (represented by an undirected chord) is the sum of the two possible

contractions of a space with its dual in pg ˙ g˚q b pg ˙ g˚q (the two arrows).

AT The [AT, Proposition 3.11] version of α is the map tn Ñ sdern Ă tdern taking tij to
B pi Ñ xj , j Ñ xi, pk ‰ i, jq Ñ 0q.

3.6. Solving the Kashiwara-Vergne Equations Using a Drinfel’d Associator. Fol-
lowing [WKO3] (in a deeper sense, following [AET]), we know that an element V solving
the KV equations (44) and (45) can be computed from a Drinfel’d associator Φ by first
computing the invariant ZB “ ZupBq of the “buckle” B, shown below both as a knotted

computations below

The result matches ΦV , computed before, to the degree shown. But this is only because both associators
are supported in even degrees, and there’s a unique even associator in Aw up to degree 4. In degree 8 these
two associators diverge.
C50We start with a straightforward computation of ZB:

In the Es presentation, “puncture” is tη. So we puncture strands 1 and 3:

At this point we would normally need to cap and apply EK. But fortunately, strands 2 and 4 carry no arrow
heads (as can be seen in the above output), so there is no need to cap them and the EK isomorphisms act by
doing nothing. Hence apart from some obvious renaming, the above is already a solution of the KV equations.
It matches with the previously-computed V to degree 4 but diverges from it in degree 8 (not shown here).
This is consistent with the result in (51), which shows that non-uniqueness starts only in degree 8.

42



trivalent graph and as a product of associators, then puncturing strands 1 and 3 and cap-
ping strands 2 and 4 from below, and then regarding the result in AwpÒ2q by applying an
“Etingof-Kazhdan (EK) isomorphism”:C50

B “ „

1 2 3 4

ÞÑ ZB “ pΦ´1q13,2,4Φ1,3,2R23Φ´1Φ12,3,4 puncture, cap, EK
ÝÝÝÝÝÝÝÝÝÝÑ V.

1

2
3

Likewise following [WKO3], we know that Cap “ αpν1{4q, where ν is the
Kontsevich integral of the unknot, or the inverse of the associator-combination
shown on the right and given by the formula αpν´1q “ Φ�α�dS2�dm32

2 �dm21
1 .C51

(Note that this computation uses the operation dSa, which is not easily available
in the El presentation).

An alternative (yet equivalent) formula for V in terms of Φ follows [AET] more closely. In-
deed according to [AET, Theorem 4] and [WKO3] V generates the tangential automorphism
of FLpx, yq given explicitly by px ÞÑ FxxF

´1
x , y ÞÑ FyyF

´1
y q, where

F “ pFx, Fyq “
`
Φ´1px,´x ´ yq, epx`yq{2Φ´1py,´x ´ yqe´y{2

˘
(56)

(though note that our conventions here agree with the conventions of [WKO3] but slightly
differ from the conventions of [AET]).

Below the line we verify Equation (56).C52

3.7. A Potential S4 Action on Solutions of KV. In [BND2], Z. Dancso and I discussed
how “the expansion of a tetrahedron” can be interpreted as an associator valued in the
appropriate space Aup,q – AupÒ3q (see also [Th]). The symmetry group of an oriented
tetrahedron is the alternating group A4, and hence A4 acts on the set of all associators in
AupÒ3q (note that while the action of the permutation group S3 on AupÒ3q is obvious, its
extension to an action of S4 is non-obvious and is best understood using the isomorphism
Aup,q – AupÒ3q). The unitarity equation (53) means that odd permutations map associators
to objects whose inverses are associators; with some abuse of language we simply say that
“S4 acts on the set of associators” (really, it acts on “associators and inverse-associators”).
As there are bi-directional relations between associators and solutions of the KV equations,
we can expect an action of S4 on the set of solutions of the KV equations and their inverses.

computations below

C51Indeed here is ν´1, followed by a verification that ν´1Cap4 is trivial:

C52We first have to rewrite Φ in terms of x “ t12 and y “ t23. To do this we “3” term in Φ, the one involving
t13 and t23 in the factorization (52) (it is the only non trivial term), and apply the appropriate change of

43



As mathematicians, Z. Dancso and I only lightly explored this potential action of S4; we
wrote down what we think are the formulas inherited from the action on associators, but on
the formal level, we’ve verified almost nothing. Yet computer experiments, described below,
suggest that our formulas are correct and that they have the properties described below.
The first Z{2 action is the involution τ discussed in Section 3.3. We have nothing further
to add.
The second Z{2 action is the involution ρ2 of A

w which multiplies every degree d element
by p´1qd. Solutions V of the KV equations are not invariant under ρ2. Yet if V0 is the solution
computed in this paper then V1 :“ R´1{2V0 is invariant under ρ2, at least experimentally.
Alternatively, V0 is (experimentally) invariant under ρ1

2 :“ Rρ2.
C53

A Z{3 action. For ξ P Awpx, yq let ρ3pξq :“ ξ�dSy�d∆y
yz�dm

xz
x �dσxy

yx , where dσxy
yx simply

means “swap the labels x and y”. Then ρ3 is a trivolution (pρ3q3 “ 1)C54, and a renormalized

computations below

variables t13 Ñ ´x ´ y, t23 Ñ y. It is smooth sailing afterwards:

C53Indeed,

C54Indeed for a random ξc, ξc�ρ3�ρ3�ρ3 “ ξc:

44



version of V0, namely V2 :“ V0 ˚ Θ´1{4 ˚ exp
` ux´uy

12

˘
˚ d∆x

xypCap2q is, at least experimentally,

invariant under the action of ρ3.
C55

computations below

C55Indeed,

45



4. Glossary of notation

Icons, then Greek letters, then Latin, and then symbols:

AT
Links with topology, finite-
dimensional Lie theory, and the

Alekseev-Torossian paper [AT].

Human input, multi-line human
input, and computer output.

FL AC Source code quotes from the
Mathematica packages FreeLie.m

and AwCalculus.m [WKO4].

α a map tn Ñ Aw
prim / Au Ñ Aw 41

Γ the conversion TWl Ñ TWs 29
Γpλq Γ1pλq 15

Γtpλq solution of e´tBλ “ CΓtpλq 13
∆ a co-product 8
δ double all strands AwpSqÑAwpS;Sq 27
η a co-unit 7
Θ exppS `Tq 36
ι the embedding CW Ñ Aw 17
λ generic element of FLpSqS 9
Λ the conversion TWs Ñ TWl 29
Λpλq Λ1pλq 15

Λtpλq solution of Ctλ “ e´BΛtpλq 14
ν Kontsevich integral of the unknot 43
πA projection on “framing part” 29
πT projection on trees 20
π
℄

a projection on wheels 29
ρ2 an involution on Aw 44
ρ3 a trivolution on Awpx, yq 44
τ an involution on SolKV 36
Φ a Drinfel’d associator 39
ΦV an associator in Aw 40
ω generic element of CWpSq 9

a, ā, ai, b, . . . generic strand labels 6
a the inclusion usualãÑvirtual 42
A Abelian lie algebra 11
a [AT] notation for A 11
adγu a derivation on FLpT q 26
ÝÑ
AS the directed AS relation 6
Aw arrow-diagram spaces 6
Aw

exp exponentials in Aw 8
AwpH;T q arrow-diagram space on heads-tails

skeleton 21
Aw

exppH;T q exponentials in AwpH;T q 23

B the “buckle” KTG 42
BCH the Baker-Campbell-Hausdorff series 11
BCHtb BCH relative to tb 16
Cλ conjugating generators by

exponentials 13
Cap Zw of a knot-theoretic cap 32
CP the CP relation 21
C

γ
u CpuÑγq 15

CW cyclic words 9
D a diagram in Aw 7
d∆ strand doubling in AwpSq 8
d∆ “strand doubling” in TWl 19
dη strand deletion in AwpSq 7
dη “strand deletion” in TWl 19
dσ strand renaming in AwpSq 8
dσ “strand renaming” in TWl 20
dA strand adjoint in AwpSq 7
dA, dAS “strand adjoint” in TWl 19
der derivations of FL 11
der [AT] notation for der 11
div

ř
u divu 16

divu a “self-action” map FLpSq Ñ CWpSq 15
dm strand stitching in AwpSq 8
dS strand antipode in AwpSq 8
dS, dSS “strand antipode” in TWl 19
E the Euler operator 35
Ef the factored presentation 29
El the lower-interlaced presentation 17
Es the split presentation 23
Eu the upper-interlaced presentation 17
es a map FLpT qH Ñ Aw

exppH;T q 24
exp tn the exponential group of tn 39
F solution of the generalized KV

equations 34
f, g solution of the original KV equations 35
FL free Lie algebra 9
g a finite-dimensional Lie algebra 6
H a set of head labels 21
hi head labels 21
hdeg degree-scaling 11
h∆ head-strand doubling in AwpH;T q 23
h∆ “head-strand doubling” in TWs 25
hη deleting a head-strand in AwpH;T q 22
hη “deleting a head-strand” in TWs 25
hσ head-strand renaming in AwpH;T q 23

46

http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/FreeLie.m
http://drorbn.net/AcademicPensieve/Projects/WKO4/AwCalculus.m


hσ “head-strand renaming” in TWs 25
hA head-strand adjoint in AwpH;T q 22
hA “head-strand adjoint” in TWs 25
hm head-strand stitching in AwpH;T q 22
hm “head-strand stitching” in TWs 25
hS head-strand antipode in AwpH;T q 22
hS “head-strand antipode” in TWs 25
Ig g ˙ g˚ 6
ÝÝÝÑ
IHX the directed IHX relation 6
j a “log-Jacobian” FL Ñ CW 16
Ju a “partial Jacobian” FL Ñ CW 15
l the lower embedding FLpSqS Ñ Aw 17
lie [AT] notation for FL 11
Aw

prim the primitives in Aw 9

Aw
primpH;T q the primitives in AwpH;T q 23

R Rp1, 2q 33
R˘1pa, bq Zw of a single ˘ crossing 30
R˘

l R˘1 in TWl 30
R˘

s R˘1 in TWs 30
RC´λ inverse of Cλ 13
RC

γ
u RCpuÑγq 15

S a set of strands 6
S a symmetric algebra 10
sder “special” derivations 41
ÝÝÝÑ
STU a directed STU relation 6
T a set of tail labels 21
ti head labels 21
tij generators of tij 38
tn the Drinfel’d-Kohno algebra 38
t∆ tail-strand doubling in AwpH;T q 23
t∆ “tail-strand doubling” in TWs 25
tη deleting a tail-strand in AwpH;T q 22
tη “deleting a tail-strand” in TWs 25
tσ tail-strand renaming in AwpH;T q 23
tσ “tail-strand renaming” in TWs 25
tA tail-strand adjoint in AwpH;T q 22
tA “tail-strand adjoint” in TWs 25
TAut the exponential group of tder 13
tb tangential bracket 12
TC the tails-commute relation 6
tder tangential derivations 11
tder [AT] notation for tder 11
tha tail-head action in AwpH;T q 23
tha “tail-head action” in TWs 25
thm tail-head stitching in AwpH;T q 23
tm tail-strand stitching in AwpH;T q 22
tm “tail-strand stitching” in TWs 25
tru a trace map FLpSq Ñ CWpSq 15

tr [AT] notation for CW 11
tS tail-strand antipode in AwpH;T q 22
tS “tail-strand antipode” in TWs 25
TW trees and wheels 9
TWl domain of El 16
TWs domain of Es 23
u the upper embedding FLpSqS Ñ Aw 17
u unzip operations 34
u, v, w tail labels 22
U universal enveloping algebra 6
V Zw of a knot-theoretic vertex 32
x, y, z head labels 22
ZB Zu of the buckle B 42
Zu the Au counterpart of Zw 36
Zw a (universal) Aw

exp-valued invariant 30

� postfix operator application,
“composition done right” 7

S a single-arrow diagram 30
˚ the stacking product in AwpSq 7
˚ the “stacking product” in TWl 19
# the stacking product in AwpH;T q 22
# the “stacking product” in TWs 25
# a product on AwpSq 27
l the co-product in AwpSq 8
l the co-product in AwpH;T q 23
´1deg degree-scaling with h “ ´1 11
xy top-bracket notation 10
B the map FLpSqS Ñ derS 11
z set minus, array key removal 19
\ a disjoint union in AwpSq 7
\ “disjoint union” in TWl 17
\ “disjoint union” in TWs 25
\ a union made disjoint 21
\ a disjoint union in AwpH;T q 22
Òn a skeleton labelled S “ t1, . . . , nu 6
Ŋuvw a cyclic word 11
pλ; ωql generic element in TWl 17
pλ; ωqs generic element in TWs 24
pλ; ωqu element in the domain of Eu 17
r¨, ¨stb tangential bracket 12

! an over-crossing 30
" an under-crossing 30
P a “virtual” crossing 30

the knot-theoretic “vertex” 32
a knot-theoretic “cap” 32

, unknotted tetrahedron 43

47



References

[AHT] L. Albert, P. Harinck, and C. Torossian, Solution Non Universelle pour le Problème KV-78, Journal
of Lie Theory 18-3 (2008) 617–626, arXiv:0802.2049. Page(s) 37.

[AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld’s associators, Annals
of Mathematics 175 (2012) 415–463, arXiv:0802.4300. Page(s) 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20,
30, 32, 35, 36, 39, 41, 42, 46, 47.

[AET] A. Alekseev, B. Enriquez, and C. Torossian, Drinfeld’s associators, braid groups and an explicit

solution of the Kashiwara-Vergne equations, Publications Mathématiques de L’IHÉS, 112-1 (2010)
143–189, arXiv:0903.4067. Page(s) 2, 42, 43.

[BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–472. Page(s) 7, 8.
[BN2] D. Bar-Natan, Non-associative tangles, in Geometric topology (proceedings of the Georgia inter-

national topology conference), (W. H. Kazez, ed.), 139–183, Amer. Math. Soc. and International
Press, Providence, 1997. Page(s) 2, 38, 39.

[BN3] D. Bar-Natan, On Associators and the Grothendieck-Teichmuller Group I, Selecta Mathematica,
New Series 4 (1998) 183–212. Page(s) 38.

[BN4] D. Bar-Natan, The BCH series in terms of Lyndon words, mathoverflow
question and pensieve entry, http://mathoverflow.net/q/116137/8899 and
http://drorbn.net/AcademicPensieve/2012-12/nb/BCH-Lyndon_Question.pdf. Page(s)
10.

[BN4] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and
an Ultimate Alexander Invariant, Acta Mathematica Vietnamica 40-2 (2015) 271–329, arXiv:
1308.1721. Page(s) 1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 15, 20, 22, 23, 25, 26, 27, 28, 32.

[BND1] D. Bar-Natan and Z. Dancso, Pentagon and Hexagon Equations Following Furusho, Proc. of the
Amer. Math. Soc. 140-4 (2012) 1243—1250, arXiv:1010.0754. Page(s) 39.

[BND2] D. Bar-Natan and Z. Dancso, Homomorphic expansions for knotted trivalent graphs, Journal of Knot
Theory and its Ramifications 22-1 (2013), arXiv:1103.1896. Page(s) 43.

[Br] A. Brochier, Drinfel’d Associators, programs and data at http://abrochier.org/sage.php.
Page(s) 39.

[CM] F. Casas and A. Murua, An Efficient Algorithm for Computing the Baker-Campbell-Hausdorff Series
and Some of its Applications, J. of Math. Phys. 50 (2009). Page(s) 10.

[Dr1] V. G. Drinfel’d, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419–1457. Page(s) 2, 38.
[Dr2] V. G. Drinfel’d, On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with

GalpQ̄{Qq, Leningrad Math. J. 2 (1991) 829–860. Page(s) 2, 38.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2

(1996) 1–41, arXiv:q-alg/9506005. Page(s) 27.
[Fr] B. Fresse, Homotopy of Operads and Grothendieck-Teichmüller Groups, book in progress,

http://math.univ-lille1.fr/~fresse/OperadHomotopyBook/. Page(s) 38.
[Fu] H. Furusho, Pentagon and hexagon equations, Annals of Mathematics 171-1 (2010) 545–556. Page(s)

39.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions,

Invent. Math. 47 (1978) 249–272. Page(s) 2, 6, 32, 35.
[Re] C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford 1993. Page(s) 10.
[Th] D. Thurston, The algebra of knotted trivalent graphs and Turaev’s shadow world, Invariants of

knots and 3-manifolds (Kyoto 2001), Geometry and Topology Monographs 4 337–362, arXiv:
math.GT/0311458. Page(s) 43.

[WKO1] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects I: W-Knots and the
Alexander Polynomial, Alg. and Geom. Top. 16-2 (2016) 1063–1133, arXiv:1405.1956. Page(s) 1, 2,
3, 5, 6, 42.

[WKO2] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects II: Tangles and the
Kashiwara-Vergne Problem, Math. Ann. 367 (2017) 1517–1586, arXiv:1405.1955. Page(s) 3, 5, 6, 7,
8, 9, 11, 17, 20, 30, 32, 33, 34, 36, 38, 39, 42.

48

http://front.math.ucdavis.edu/0802.2049
http://front.math.ucdavis.edu/0802.4300
http://front.math.ucdavis.edu/0903.4067
http://www.math.toronto.edu/~drorbn/LOP.html#OnVassiliev
http://www.math.toronto.edu/~drorbn/LOP.html#NAT
http://www.math.toronto.edu/~drorbn/LOP.html#Associators
http://mathoverflow.net/q/116137/8899
http://drorbn.net/AcademicPensieve/2012-12/nb/BCH-Lyndon_Question.pdf
http://www.math.toronto.edu/~drorbn/papers/KBH/
http://front.math.ucdavis.edu/1308.1721
http://front.math.ucdavis.edu/1010.0754
http://front.math.ucdavis.edu/1103.1896
http://abrochier.org/sage.php
http://front.math.ucdavis.edu/q-alg/9506005
http://math.univ-lille1.fr/~fresse/OperadHomotopyBook/
http://www.springerlink.com/content/v73014gx14084624/
http://front.math.ucdavis.edu/math.GT/0311458
http://drorbn.net/AcademicPensieve/Projects/WKO1
http://front.math.ucdavis.edu/1405.1956
http://drorbn.net/AcademicPensieve/Projects/WKO2
http://front.math.ucdavis.edu/1405.1955


[WKO3] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Objects III: Double Tree Con-
struction, http://drorbn.net/AcademicPensieve/Projects/WKO3 (in preparation). Page(s) 1, 2,
3, 5, 6, 34, 38, 42, 43.

[WKO4] D. Bar-Natan, Finite Type Invariants of W-Knotted Objects IV: Some Computations (self-
reference), paper and related files at http://drorbn.net/AcademicPensieve/Projects/WKO4. The
arXiv:1511.05624 edition may be older. Page(s) 1, 2, 10, 31, 33, 36, 37, 39, 40, 46.

[Wo] Wolfram Mathematica 10 Documentation Center, http://reference.wolfram.com. Page(s) 2.

Department of Mathematics, University of Toronto, Toronto Ontario M5S 2E4, Canada

E-mail address : drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/~drorbn

49

http://drorbn.net/AcademicPensieve/Projects/WKO3
http://drorbn.net/AcademicPensieve/Projects/WKO4
http://front.math.ucdavis.edu/1511.05624
http://reference.wolfram.com

	1. Introduction
	1.1. Acknowledgement

	2. Group-like elements in Aw
	2.1. A brief review of Aw
	2.2. Some preliminaries about free Lie algebras and cyclic words
	2.3. The lower-interlaced presentation El of Awexp
	2.4. The factored presentation Ef of Awexp and its stronger precursor Es
	2.4.1. The family {Aw(H;T)}
	2.4.2. Operations on {Aw(H;T)}.
	2.4.3. Group-like elements in {Aw(H;T)}.
	2.4.4. The inclusion {Aw(S)} -3mu{Aw(H;T)}.

	2.5. Converting between the El and the Ef presentations.

	3. Some Computations
	3.1. Tangle Invariants
	3.1.1. The General Framework
	3.1.2. The Knot 817 and the Borromean Tangle

	3.2. Solutions of the Kashiwara-Vergne Equations
	3.3. The involution  and the Twist Equation
	3.4. Drinfel'd Associators
	3.5. Associators in Aw
	3.6. Solving the Kashiwara-Vergne Equations Using a Drinfel'd Associator
	3.7. A Potential S4 Action on Solutions of KV

	4. Glossary of notation
	References

