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Abstract. We present a formalism within which the relationship (discovered by Drinfel’d
in [Dr1, Dr2]) between associators (for quasi-triangular quasi-Hopf algebras) and (a variant
of) the Grothendieck-Teichmuller group becomes simple and natural, leading to a simplifica-
tion of Drinfel’d’s original work. In particular, we reprove that rational associators exist and
can be constructed iteratively, though the proof itself still depends on the apriori knowledge
that a not-necessarily-rational associator exists.
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1. Introduction

1.1. Reminders about quasi-triangular quasi-Hopf algebras. A quasi-triangular quasi-
Hopf algebra [Dr1] is an algebra A together with a not-quite-cocommutative and not-quite-
coassociative coproduct ∆, whose failure to be cocommutative is “controlled” by some ele-
ment R ∈ A⊗2 and whose failure to be coassociative is “controlled” by some element Φ ∈ A⊗3
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(for more details, see [Dr1] or [Ka, SS]). For the representations of A to form a tensor cate-
gory, R and Φ have to obey the so-called “pentagon” and “hexagon” ± equations (see

section 3). In [Dr1] Drinfel’d finds a “universal” formula (RKZ,ΦKZ) for a solution of and

± by considering holonomies of the so-called Knizhnik-Zamolodchikov connection. The
formula RKZ is very simple — RKZ is in a clear sense “an exponential”. The formula ΦKZ

is somewhat less satisfactory, as it requires analysis — differential equations and/or iterated
integrals whose values are most likely transcendental numbers [Dr1, LM1, Za]. In [Dr2]
Drinfel’d proves that there is an iterative algebraic procedure for finding a universal formula
for a solution (R,Φ) of , ± (with R = RKZ), and that such a universal formula (called
an associator) can be found iteratively and over the rationals.

Associators (and the iterative procedure for constructing them) are important in the theory
of finite-type invariants of knots (Vassiliev invariants) [B-N4, B-N2, Ca, Ka, LM1, Pi] and of
3-manifolds [LMO, Le]. Recently, Etingof and Kazhdan [EK1, EK2] used associators to show
that any Lie bialgebra can be quantized. Their results become algorithmically computable
once we know that an associator can be found iteratively.1

Unfortunately, Drinfel’d’s paper is complicated and hard to read. It involves the intro-

duction, almost “out of thin air”, of two groups, ĜT and ĜRT, that act on the set ÂSS

of all associators. Both groups act simply transitively on ÂSS, with ĜT acting on the

right and ĜRT on the left, and the two actions commute. He then studies these groups

and their actions on ÂSS to deduce the existence of formulae better then ΦKZ. Drinfel’d’s
“Grothendieck-Teichmuller” group ĜT is closely related to number theory and the group

Gal(Q̄/Q). See [Dr2, Sc]. ĜRT is in some sense a “gRaded” version of ĜT, explaining why
Drinfel’d inserted an R in the middle of its name.

1.2. What we do. The purpose of this paper is to present a framework within which the

set of associators ÂSS, the groups ĜT and ĜRT, and the relevant facts about them are

natural. In fact, the mere fact that ĜT and ĜRT exist and act simply transitively on the

right (for ĜT) and on the left (for ĜRT), with the two actions commuting, stems from the
following basic principle (which I learned from M. Hutchings):

Principle 1. If B is a mathematical structure (i.e., a set, a set with a basepoint, an algebra,
a category, etc.) and if C is an isomorphic mathematical structure, then on the set A of all
isomorphisms B → C there are two commuting group actions, with both actions simple and
transitive:

• The group GT of (structure-preserving) automorphisms of B acts on A by composition
on the right.
• The group GRT of (structure-preserving) automorphisms of C acts on A by compo-
sition on the left.

We apply this principle to a certain “upgrade” of the Kohno isomorphism [Koh] (see

also [KT]) between the unipotent completion P̂Bn of the pure braid group on n strands and

its associated graded algebra, which is a certain completed algebra Âpb
n generated by symbols

1 For most applications of associators to finite-type invariants, it is in fact sufficient to use a weaker but
more complicated notion of an associator for which an iterative construction was given in [B-N2].
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tij with 1 ≤ i 6= j ≤ n.2 More specifically, in our case, B will be a certain category PaB

(defined in section 2.1) of parenthesized braids, and C will be a certain category PaCD (de-
fined in section 2.2) of parenthesized chord diagrams. On top of the category structure, both
PaB and PaCD are “fibered linear”, have natural “basepoints” (some specific morphisms
between some specific objects), natural “coproducts”, and natural “extension”, “cabling”,
and “strand removal” operations, all defined in section 2. Furthermore, PaB has a natu-
ral “filtration”, PaCD has a natural “gradation” (which induces a filtration as well), and
these filtrations/gradations (also defined in section 2) respect all other structure on PaB

and PaCD. In applying Principle 1, we will only consider isomorphisms/automorphisms
that respect all the additional structure on PaB and PaCD.

To be fair, we apply Principle 1 not to B = PaB and C = PaCD, but rather to their
“quotients” PaB(m) = PaB/Fm+1PaB and PaCD(m) = PaCD/Fm+1PaCD by their

respective filtrations, or to their “completions” P̂aB = lim
←−m→∞

PaB(m) and P̂aCD =

lim
←−m→∞

PaCD(m). In section 3 we show that every isomorphism (invertible structure-

preserving functor) Ẑ : P̂aB→ P̂aCD is determined by its action on some specific morphism

a in P̂aB, and that Ẑ(a) can be interpreted as an associator. We will thus identify the set

of all such Ẑ’s with ÂSS, and get the two groups ĜT and ĜRT (as well as their simple,
transitive, and commuting actions) entirely for free from Principle 1. Similarly, using Prin-

ciple 1 with B = PaB(m) and C = PaCD(m), we get groups GT(m) and GRT(m) that act
on the set ASS(m) of all “associators up to degree m”.

In section 4 we start by explaining why the surjectivity of the natural map π : GRT(m) →
GRT(m−1) implies the surjectivity of the map ASS(m) → ASS(m−1), which implies that
there exists an iterative procedure for finding an associator, and that a rational associator
exists.

We then turn to the proof of the surjectivity of π. To do this, we first write the relations

defining ĜRT explicitly. These turn out to be the “pentagon”, the “classical hexagon”, the
“semi-classical hexagon”, and some technical relations of lesser interest. It turns out that
the only relation that could challenge the surjectivity of π is the semi-classical hexagon, and
so we spend the rest of section 4 proving that the semi-classical hexagon follows from the
classical hexagon, the pentagon, and the lesser relations. This is done by using a certain
12-face polyhedron to show that the failure ψ of the semi-classical hexagon to hold lies in the
kernel of some differential, and by studying the relevant cohomology of the corresponding
complex.

Just for completeness, in section 5 we display the defining formulas of ĜT and ĜRT

that are not needed in the main argument. A future part II of this paper will contain some
additional results, following [Dr2, section 6].

It is worthwhile to note that all our arguments depend on the existence of at least one

associator. Otherwise, we do not know that P̂aB and P̂aCD are at all isomorphic. So in a
sense, all that we do is to take the Knizhnik-Zamolodchikov associator ΦKZ (constructed by
Drinfel’d) and “improve” it.

2In the language of Vassiliev invariants, the Kohno isomorphism is a combination of three facts: that the

space of Vassiliev invariants of pure braids is the dual of P̂Bn, that the associated graded space of Vassiliev

invariants of pure braids is dual to the algebra Apb
n of “chord diagrams”, and that the maps P̂Bn → Â

pb
n

that we consider are “universal Vassiliev invariants”.
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Almost everything that we do appears either explicitly or implicitly in Drinfel’d’s pa-

per [Dr2]. The presentation of ĜT as a group of automorphisms of some braid-group-like
objects is due to Lochak and Schneps [LS1, LS2] (who work with a different completion than
ours).

1.3. Acknowledgement. This paper grew out of a course I gave at Harvard University
in the spring semester of 1995, titled “Knot Theory as an Excuse”. One of the advertised
goals of that course was to “attempt to read together two papers by Drinfel’d [[Dr1, Dr2]]”3,
where I admitted that “I have read about 20% of the material in these papers, understood
about 20% of what I read, and got a lot out of it”. The idea was then to have “a discussion
group in which everybody holds copies of the papers and we jointly try to understand them”.
Courses like that are usually doomed to fail, but due to the amazing group of participants
I think we managed to meet the target of “get ourself up to about 50% on both figures [of
reading and understanding]”. These participants were: D. D. Ben-Zvi, R. Bott, A. D’Andrea,
S. Garoufalidis,D. J. Goldberg, E. Haley, M. Hutchings, D. Kazhdan, A. Kirillov, T. Kubo,
S. Majid, A. Polishchuk, S. Sternberg, D. P. Thurston, and H. L. Wolfgang. I wish to thank
them all for the part they took in the joint effort that led to this paper. In addition, I’d
like to thank P. Deligne, E. de-Shalit, and E. Goren for teaching me some basic facts about
algebraic groups, and B. Enriquez, A. Haviv, D. Grinberg, Yael K., A. Referee, E. Rips, and
J. D. Stasheff for many useful comments.

2. The basic definitions

In this section we introduce the two mathematical structures PaB and PaCD on which
we will apply Principle 1. Let A be some fixed commutative associative Q-algebra with unit
(typically C or Q). Most objects that we will define below “have coefficients” in A. We will
mostly suppress A from the notation, except in the few places where it matters.

2.1. Parenthesized braids and GT. A parenthesized braid is a braid (whose ends are
points ordered along a line) together with a parenthesization of its bottom end (the domain)
and its top end (the range). A parenthesization of a sequence of points is a specification of
a way of “multiplying” them as if they were elements in a non-associative algebra. Rather
then giving a formal definition, Figure 1 contains some examples.

Parenthesized braids form a category in an obvious
way. The objects of this category are parenthesizations,
the morphisms are the parenthesized braids themselves,
and composition is the operation of putting two paren-
thesized braid on top of each other, as on the right
(provided the range of the first is the domain of the
second).

· · ·

· · ·
B1 ◦

· · ·

· · ·
B2 =

· · ·

· · ·
B2

· · ·

· · ·
B1

Furthermore, there are some naturally defined operations on parenthesized braids. If B is
such a braid with n strands, these operations are:

3All quotes taken from the official course description.
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•)

•)•)

(• (••))

((••) (••))

(((••)

((••)

Figure 1. A parenthesized braid whose domain is ((••)•) and whose range is (•(••)) (left),

and a parenthesized braid whose domain is (((••)•)•) and whose range is ((••)(••)) (right).

Notice that by convention we draw “inner multiplications” as closer endpoints, and “outer

multiplications” as farther endpoints. Below we will not bother to specify the parenthesiza-

tions at the ends explicitly, as this information can be read from the distance scales appearing

in the way we draw the ends.

• Extension operations: Let d0B = dn0B (dn+1B = dnn+1B) be B with one straight
strand added on the left (right), with ends regarded as outer-most:

d0

( )
= ; d3

( )
= .

• Cabling operations: Let diB = dni B for 1 ≤ i ≤ n be the parenthesized braid obtained
from B by doubling its ith strand (counting at the bottom), taking the ends of the
resulting “daughter strands” as an inner-most product:

d2

( )
= .

• Strand removal operations4: Let siB = sni B for 1 ≤ i ≤ n be the parenthesized braid
obtained from B by removing its ith strand (counting at the bottom):

s2





 = .

The skeleton SB of a parenthesized braid B is the map that it induces from the points of
its domain to the points of its range, taken together with the domain and range:

(1) S





 = .

More precisely, the skeleton S is a functor on the category of parenthesized braids whose
image is in the category PaP of parenthesized permutations, whose definition should be clear
from its name and a simple inspection of the example in (1). There are naturally defined
operations di and si on PaP as in the case of parenthesized braids, and the skeleton functor

4The strand removal operations (and all other si’s below) are important in the applications, but play no
crucial role in this paper and can be systematically removed with no change to the end results.
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S intertwines the di’s and the si’s acting on parenthesized braids and on parenthesized
permutations.

The category that we really need is a category of formal linear combinations of parenthe-
sized braids sharing the same skeleton:

Definition 2.1. Let PaB(A) = PaB (for Parenthesized Braids) be the category whose

objects are parenthesizations and whose morphisms are pairs (P,
∑k

j=1 βjBj), where P is a
morphism in the category of parenthesized permutations, the Bj ’s are parenthesized braids
whose skeleton is P , and the βj’s are coefficients in the ground algebra A. The composition
law in PaB is the bilinear extension of the composition law of parenthesized braids. There
is a natural forgetful “skeleton” functor S : PaB → PaP. If the sum

∑
βjBj is not the

empty sum, we usually suppress P from the notation, as it can be inferred from the Bj’s.
See Figure 2.

− +22
7

S(B) =B =

Figure 2. A morphism B in PaB and its skeleton S(B) in PaP.

2.1.1. Fibered linear categories. The category PaB together with the functor S : PaB →
PaP is an example of a fibered linear category. Let P be a category “of skeletons”. A fibered
linear category over P is a pair (B,S : B → P) of the form (category, functor into P), in
which B has the same objects as P, the “skeleton” functor S is the identity on objects, the
inverse image S−1(P ) of every morphism P in P is a linear space, and so the composition
maps in B are bilinear in the natural sense. Many notions from the theory of algebras
have analogs for fibered linear categories, with the composition of morphisms replacing the
multiplication of elements. Let us list the few such notions that we will use, without giving
precise definitions:

• A subcategory of a fibered linear category (B,S : B→ P) is a choice of a linear subspace in
each “space of morphisms with a fixed skeleton” S−1(P ), so that the system of subspaces
thus chosen is closed under composition.
• An ideal in (B,S : B→ P) is a subcategory I so that if at least one of the two composable
morphisms B1 and B2 in B is actually in I, then the composition B1 ◦B2 is also in I.
• One can take powers of ideals — The morphisms of Im will be all the morphisms in B

that can be presented as compositions of m morphisms in I. The power Im is also an
ideal in B.
• One can form the quotient B/I of a fibered linear category B by an ideal I in it, and the
result is again a fibered linear category.
• Direct sums of fibered linear categories that are fibered over the same skeleton category
can be formed.
• One can define filtered and graded fibered linear categories. One can talk about the
associated graded fibered linear category of a given filtered fibered linear category.
• One can take the inverse limit of an inverse system of fibered linear categories (fibered
in a compatible way over the same category of skeletons). In particular, if I is an ideal



ASSOCIATORS AND THE GROTHENDIECK-TEICHMULLER GROUP 7

in a fibered linear category B, one can form “the I-adic completion B̂ = lim
←−m→∞

B/Im.
The I-adic completion is a filtered fibered linear category.
• Tensor powers of a fibered linear category (B,S : B→ P) can be defined. For example,
B ⊗B will have the same set of objects as B, and for any two such objects O1 and O2,
we set

morB⊗B(O1, O2) =
∐

P∈morP(O1,O2)

S−1(P )⊗ S−1(P ).

B⊗B is again a fibered linear category.
• The notion of a coproduct functor � : B→ B⊗B makes sense.

2.1.2. Back to parenthesized braids. We can now introduce some more structure on PaB,
and specify completely the mathematical structures that will play the role of B in Principle 1.

Definition 2.2. Let � : PaB → PaB ⊗ PaB be the coproduct functor defined by setting
each individual parenthesized braid B to be group-like, that is, by setting �(B) = B ⊗ B.

Let I be the augmentation ideal of PaB, the ideal of all pairs (P,
∑
βjBj) in which∑

βj = 0. Powers of this ideal define the unipotent filtration of PaB: FmPaB = Im+1.

Definition 2.3. Let PaB(m) = PaB/FmPaB = PaB/Im+1 be the mth unipotent quotient5

of PaB, and let P̂aB = lim
←−m→∞

PaB(m) be the unipotent completion of PaB.

Let σ be the parenthesized braid .

The fibered linear categories PaB(m) and P̂aB inherit the operations di and si from paren-
thesized braids, and a coproduct � and a filtration F⋆ from PaB.6 The specific parenthesized
braid σ can be regarded as a morphism in any of these categories.

Definition 2.4. Let GT(m) and ĜT (really, GT(m)(A) and ĜT(A)) be the groups of struc-

ture preserving automorphisms of PaB(m) and P̂aB, respectively. That is, the groups of all

functors PaB(m) → PaB(m) (or P̂aB → P̂aB) that cover the skeleton functor, intertwine
di, si and � and fix σ. In short, let

B(m) =
(
PaB(m),S : PaB(m) → PaP, di, si,�, σ

)
;

B̂ =
(
P̂aB,S : P̂aB→ PaP, di, si,�, σ

)
;

GT(m) = AutB(m); ĜT = Aut B̂.

5If you are familiar with Vassiliev invariants, notice that PaB(m) is simply PaB moded out by “(m+1)-
singular parenthesized braids”.

6Added April 2016: To define � one must first understand the relevant monoidal structures, namely

P̂aB⊗̂P̂aB and PaB(m) ⊗(m) PaB(m), and some subtelty occurrs. In the case of P̂aB⊗̂P̂aB, the tensor
product must be understood in the sense of completed filtered objects: in general, if A and B are filtered
objects then their ordinary tensor product C := A⊗B is again filtered with FmC :=

∑
i+j=m FiA⊗FjB, and

one may set A⊗̂B := lim
←−m→∞

C/FmC. The case of ⊗(m) is even more subtle, as it must be understood in the

sense of “filtered objects with Fm+1 = 0”. Namely, if A and B are filtered objects with Fm+1A = Fm+1B = 0

then A⊗(m) B := A⊗B
/∑

i+j>m FiA⊗FjB .
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Remark 2.5. One easily sees that elements of GT(m) (ĜT) automatically preserve the fil-
tration F⋆.

7

Claim 2.6. PaB is generated by a±1, σ±1, and their various images by repeated applications
of the di’s, where

a = , σ = .

Proof. (sketch) The main point is that any of the standard generators of the braid group
can be written in terms of a±1 and σ±1 and their images. For example,

= = d0a
−1 ◦ d0d3σ ◦ d0a. �

2.2. Parenthesized chord diagrams and GRT. The category PaCD, the main ingre-
dient of the mathematical object C on which we will apply Principle 1, can be viewed as
natural in two (equivalent) ways. First, PaCD is natural because it is the associated graded
of PaB, as will be proven in section 3. PaCD can also be viewed as the category of “chord
diagrams for finite-type (Vassiliev) invariants [B-N1, B-N3, Bi, BL, Go1, Go2, Kon, Va1, Va2]
of parenthesized braids”, and all the operations that we will define on PaCD are inherited
from their parallels on parenthesized braids, that were defined in section 2.1. I prefer not
to make more than a few comments about the latter viewpoint below. Saying more requires
repeating well known facts about finite-type invariants, and these can easily be found in the
literature. If you already know about Vassiliev invariants and chord diagrams, you’ll find the
relation between them and the definitions below rather clear. Unfortunately, if finite-type
invariants are not mentioned, we have to start with some unmotivated definitions.

Definition 2.7. Let Apb
n = Apb

n (A) be the algebra (over the ground algebra A) gener-
ated by symbols tij for 1 ≤ i 6= j ≤ n, subject to the relations tij = tji, [tij , tkl] = 0 if
|{i, j, k, l}| = 4, and [tjk, tij + tik] = 0 if |{i, j, k}| = 3. The algebra Apb

n is graded by setting
deg tij = 1; let GmA

pb
n be the degree m piece of Apb

n , let F⋆A
pb
n be the filtration defined by

FmA
pb
n =

⊕
m′>m Gm′Apb

n , let A
pb(m)
n be Apb

n /FmA
pb
n , and let Âpb

n be the graded completion

7Added May 2016: Given the delicacy of the proof of this remark, it would have probably been more
natural to include the filtration F⋆ within the list of “items to preserve” in Definitions 2.4 and 2.14. Anyway,
here’s a sketch of the proof (partially following [Gr]): For simplicity let us argue in a bialgebra B rather than
in the more complicated structure PaB. In B the kernel I of the counit ǫ is automatically invariant under
automorphisms ϕ respecting the coproduct �, for indeed ǫ◦ϕ = ((ǫ◦ϕ)⊗ǫ)◦� = ((ǫ◦ϕ)⊗(ǫ◦ϕ−1 ◦ϕ)◦� =
(ǫ⊗ (ǫ ◦ ϕ−1)) ◦� ◦ϕ = ǫ ◦ϕ−1 ◦ ϕ = ǫ. Hence the filtration of B by {Ip} is preserved by automorphisms of

B. Applying this to each of B(m) and B̂ we see that their filtrations defined by the powers of their respective
augmentation ideals I(m) and Î are preserved by their respective automorphism groups. It remains to show

that the filtrations that B(m) and B̂ inherit from B are the same as their filtrations by the powers of their
augmentation ideals. In the case of B(m), this amounts to the statement Ip/Im = (I/Im)p (for p ≥ m),

which is trivial. In the case of B̂ the statement is lim
←−m≥p

(Ip/Im) = (lim
←−m

I/Im)p. The latter is probably

false in general, but it is true if B is graded. In our “braids” case, B̂ is isomorphic to its associated graded
as is shown later in this paper in a manner which is independent of this footnote, so the required statement
is true.
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lim
←−m→∞

A
pb(m)
n of Apb

n . We call elements of Apb
n chord diagrams, and draw them as in Fig-

ure 3. (In the language of finite-type invariants, Apb
n is the algebra of chord diagrams for

n-strand pure braids, and the last relation is the “4T” relation.)

t13t13t12t23 ←→ ; 4T : = ++

Figure 3. Elements of Apb
3 are presented as chord diagrams made of 3 vertical strands and

some number of horizontal chords connecting them. A chord connecting the ith strand to the

jth strand represents tij , and products are read from the bottom to the top of the diagram.

Definition 2.8. There is an action of the symmetric group Sn on Apb
n by “permuting the

vertical strands”, denoted by (τ,Ψ) 7→ Ψτ :

Ψ = 7→ Ψ231 = .

Definition 2.9. Let di = dni : Apb
n → A

pb
n+1 for 0 ≤ i ≤ n + 1 and si = sni : Apb

n → A
pb
n−1

for 1 ≤ i ≤ n be the algebra morphisms defined by their action on the generators tjk (with
j < k) as follows:

dit
jk =





tj+1,k+1 i < j < k

tj,k+1 + tj+1,k+1 i = j < k

tj,k+1 j < i < k

tjk + tj,k+1 j < i = k

tjk j < k < i

sit
jk =





tj−1,k−1 i < j < k

0 i = j < k

tj,k−1 j < i < k

0 j < i = k

tjk j < k < i.

Graphically, dn0 (dnn+1) acts by adding a strand on the left (right), dni for 1 ≤ i ≤ n acts by
doubling the ith strand and summing all the possible ways of lifting the chords that were
connected to the ith strand to the two daughter strands, and sni acts by deleting the ith
strand and mapping the chord diagram to 0 if any chord in it was connected to the ith
strand:

d0

( )
= ; d2

( )
= = + + + ;

s1

( )
= ; s1

( )
= 0.

(Here and below the symbol means + ).

Definition 2.10. Let � : Apb
n → A

pb
n ⊗ A

pb
n be the coproduct defined by declaring the tij’s

to be primitive: �(tij) = tij ⊗ 1 + 1⊗ tij.
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Definition 2.11. PaCD = PaCD(A) (for Parenthesized Chord Diagrams) is the category
whose objects are parenthesizations and whose morphisms are formal productsD·P , where P
is a parenthesized permutation of n objects (for some n) and D ∈ Apb

n (A). The composition
law in PaCD is D1 ·P1◦D2 ·P2 = (D1 ·D

P1
2 ) · (P1◦P2) (whenever P1 and P2 are composable),

where DP1
2 denotes the action of of the permutation P1 on D2 as in Definition 2.8. This

composition law is better seen graphically as in Figure 4. PaCD inherits a grading PaCD =⊕
m GmPaCD from Apb

⋆ , and is fibered linear over PaP with the skeleton functor S : D ·P 7→
P . PaCD is also be filtered by setting FmPaCD =

⊕
m′>m Gm′PaCD. PaCD inherits a

coproduct � : PaCD→ PaCD⊗PaCD from the coproduct � of Apb
n .

(
t12 ·

)
◦
(
t23t12 ·

)
→ ◦ → → → t12t23t13 ·

Figure 4. The composition of a morphism in morPaCD((•(••)), (•(••))) with a morphism

in morPaCD((•(••)), ((••)•)).

Definition 2.12. As in the case of PaB, there are some naturally defined operations on
PaCD. If D ·P is a parenthesized chord diagram on n strands, set di(D ·P ) = dni (D ·P ) =
dniD · d

n
i P , and similarly for si = sni . These operations are:

• Extension operations: d0 (dn+1) adds a far-away independent strand on the left
(right).
• Cabling operations: diB with 1 ≤ i ≤ n doubles the ith strand and sums all possible
ways of lifting the chords that were connected to the ith strand to the two daughter
strands.
• Strand removal operations: si removes the ith strand and maps everything to 0 if
there was any chord connected to the ith strand.

Definition 2.13. Let PaCD(m) be the category PaCD/FmPaCD of parenthesized chord

diagrams of degree up to m, and let P̂aCD be the category lim
←−m→∞

PaCD(m) of formal

power series of parenthesized chord diagrams. The fibered linear categories PaCD(m) and

P̂aCD inherit the operations di and si, the coproduct � and the filtration F⋆ from PaCD.

Let X and H be the parenthesized chord diagrams and respectively, and let R̃

be the formal exponential R̃ = exp
(
1
2
H
)
·X , regarded a morphism in PaCD(m) or P̂aCD.

Definition 2.14. Let GRT(m) and ĜRT (really, GRT(m)(A) and ĜRT(A)) be the groups

of structure preserving automorphisms of PaCD(m) and P̂aCD, respectively. That is, the

groups of all functors PaCD(m) → PaCD(m) (or P̂aCD→ P̂aCD) that cover the skeleton

functor, intertwine di, si and � and fix R̃. In short, let

C(m) =
(
PaCD(m),S : PaCD(m) → PaP, di, si,�, R̃

)
;

Ĉ =
(
P̂aCD,S : P̂aCD→ PaP, di, si,�, R̃

)
;

GRT(m) = AutC(m); ĜRT = Aut Ĉ.
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Remark 2.15. Elements of GRT(m) (ĜRT) fix each of X and H individually. Indeed,

R̃2 = expH and hence expH and thus H are fixed. But then X = exp(−1
2
H)R̃ is fixed too.

Claim 2.16. PaCD is generated by a±1, X, H, and their various images by repeated appli-
cations of the di’s, where

a = , X = , H = .

(Notice that the symbol “a” plays a double role, as a generator of PaB and as a generator
of PaCD).

Proof. (sketch) Perhaps one illustrative example will suffice:

= = d0X ◦ a
−1 ◦ d3H ◦ a ◦ d0X.

�

Remark 2.17. Remark 2.15 and claim 2.16 imply that elements of GRT(m) (ĜRT) auto-
matically preserve the filtration F⋆.

3. Isomorphisms and associators

In this section we make the key observation that makes Principle 1 useful in our case: The
fact that the set of all associators à la Drinfel’d [Dr1, Dr2] can be identified with the set

of all structure-preserving functors Ẑ : B̂ → Ĉ. Recall that A is some fixed commutative
associative Q-algebra with unit.

Definition 3.1. An associator is an invertible element Φ of Âpb
3 (A) satisfying the following

axioms:

• The pentagon axiom holds in Âpb
4 :

( ) d4Φ · d2Φ · d0Φ = d1Φ · d3Φ.

• The hexagon axioms hold in Âpb
3 :

( ±) d1 exp

(
±
1

2
t12
)

= Φ · exp

(
±
1

2
t23
)
· (Φ−1)132 · exp

(
±
1

2
t13
)
· Φ312.

• Φ is non-degenerate: s1Φ = s2Φ = s3Φ = 1.
• Φ is group-like: �Φ = Φ⊗ Φ.

Apart from the different conventions, this definition is equivalent to Drinfel’d’s [Dr2] defini-
tion of an Fr(A,B)-valued ϕ,8 and practically equivalent to the definition of anAPhor-valued
Φ in [B-N2].

Definition 3.2. Let ÂSS = ÂSS(A) be the set of associators Φ ∈ Âpb
3 (A). Similarly, if we

mod out by degrees higher than m, we can define associators up to degree m and the set
ASS(m).

Remark 3.3. The hexagon axiom for Φ ∈ ÂSS or Φ ∈ ASS(m) implies that Φ = 1+(higher
degree terms).

8Precisely, our Φ is Drinfel’d’s ϕ−1.



12 DROR BAR-NATAN

By the definition of B̂ and Ĉ, a structure-preserving functor Ẑ : B̂ → Ĉ carries σ to R̃,

and thus it is determined by its value Ẑ(a) on the remaining generator of PaB. As Ẑ must

cover the skeleton functor, Ẑ(a) must be of the form Φ
Ẑ
· a, for some Φ

Ẑ
∈ Âpb

3 .

Proposition 3.4. If Ẑ is a structure preserving functor B̂ → Ĉ, then Φ
Ẑ
is an associator,

and the map Ẑ 7→ Φ
Ẑ

is a bijection between the set of all structure-preserving functors

Ẑ : B̂ → Ĉ and the set ÂSS of all associators Φ ∈ Âpb
3 . A similar construction can be made

in the case of B(m), C(m) and ASS(m), and the same statements hold.

Before we can prove Proposition 3.4, we need a bit more insight about the structure of
Apb

n .

Lemma 3.5. The following two relations hold in Apb
n :

(1) Locality in space: For any k ≤ n, the subalgebra of Apb
n generated by {tij : i, j ≤ k}

commutes with the subalgebra generated by {tij : i, j > k}. In pictures, we see that
elements that live in “different parts of space” commute:

=
A

B A

B

1 k n 1 k nk+1 k+1
··· ··· ··· ···

(2) Locality in scale Elements that live in “different scales” commute. This is best ex-
plained by a picture, with notation as in Definition 2.9:

A

· · ·

+

· · ·· · ·

...

A
...

local

global

(We think of the part A as “local”, as it involves only the “local” group of strands,
and of the rest as “global”, as it regards the “local” group of strands as “equal”.)

(A similar statement is [B-N2, Lemma 3.4].)

Proof of Lemma 3.5. Locality in space follows from repeated application of the relation
tijtkl = tkltij with i < j < k < l. Locality in scale follows from repeated application of
the relation tijtkl = tkltij with general i, j, k, l with |{i, j, k, l}| = 4, and the 4T relation,

which can be redrawn in the more suggestive form = . �

Proof of Proposition 3.4. Let Ẑ be a structure preserving functor B̂ → Ĉ, and let Φ = Φ
Ẑ
.

Apply Ẑ to the parenthesized braid equality

= ; d4a ◦ d2a ◦ d0a = d1a ◦ d3a,
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and, using Ẑ(a) = Φ · a, get

(d4Φ · d2Φ · d0Φ) · (d4a ◦ d2a ◦ d0a) = (d1Φ · d3Φ) · (d1a ◦ d3a).

The Âpb part of this equality is precisely the fact the Φ satisfies the pentagon equation.
Similarly, the parenthesized braid equality

(2) = ; d1σ = a ◦ d0σ ◦ a
−1 ◦ d3σ ◦ a

together with Ẑ(a) = Φ·a and Ẑ(σ) = R̃ implies the positive hexagon equation +. Likewise,

the same parenthesized braid equality but with σ replaced by σ−1 implies −.

s1a = s2a = s3a is the identity morphism in mor((••), (••)), and after applying Ẑ we find

that Φ is non-degenerate. Finally, a is group-like in PaB and as Ẑ preserves the coproduct,
Φ is also group-like. Hence we have verified that Φ

Ẑ
= Φ is an associator.

To show that the map Ẑ 7→ Φ
Ẑ
is a bijection we construct an inverse map. Let Φ be an

associator. We try to define a functor Ẑ = ẐΦ : P̂aB → P̂aCD by setting Ẑ(a) = a · Φ

and Ẑ(σ) = R̃, and by extending it to all other generators of PaB in a way compatible with
the di’s. We need to verify that this extension yields a well-defined functor; that is, that

all the relations between the generators of PaB get mapped to relations in PaCD by Ẑ.
One can verify (using the Mac Lane coherence theorem [Ma]) that the relations between the
generators of PaB are the (repeated) di images of the relations (see also [B-N2]):

• The pentagon d4a ◦ d2a ◦ d0a = d1a ◦ d3a, as above.
• The hexagons d1σ

±1 = a ◦ d0σ
±1 ◦ a−1 ◦ d3σ

±1 ◦ a, as above.
• Locality in space: (slashes ( ) indicate bundles of strands)

=
A

B A

B
.

Here A and B can each be either a±1 or σ±1.
• Locality in scale:

=
A B C

A B C and =

A B

B A
.

Here A, B and C can each be either a±1 or σ±1.

Clearly, Ẑ respects the pentagon and the hexagons because Φ satisfies the pentagon and the

hexagon axioms in the definition of an associator. By Lemma 3.5, Ẑ respects the locality rela-

tions. Hence Ẑ is well defined on morphisms of PaB. One can verify that Ẑ(I) ⊂ F1P̂aCD,

and hence Ẑ makes sense on P̂aB. Finally, the fact that Ẑ intertwines the coproduct �
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and the operations si follows from the group-like property and the non-degeneracy of Φ,
respectively.

The proof in the case of B(m), C(m) and ASS(m) is essentially identical. �

Proposition 3.6. Every structure preserving functor Ẑ : B̂ → Ĉ or Z(m) : B(m) → C(m) is
invertible.

Proof. The unipotent completion P̂Bn of the pure braid group PBn on n strands can be iden-

tified with the the ring of morphisms in P̂aB from the n-point object Or = (•(• . . . (••) . . .))

back to itself that cover the identity permutation in PaP. Similarly, Âpb
n can be identified

with the ring of self-morphisms of Or in P̂aCD that cover the identity permutation. Thus, a

functor Ẑ : B̂ → Ĉ induces a filtration-preserving ring morphism Ẑn : P̂Bn → Â
pb
n . In P̂aB

(P̂aCD) every morphism can be written as a composition of invertible morphisms and an

element of P̂Bn (Âpb
n ), and hence it is enough to prove that Ẑn is an isomorphism for every

n. Finally, it is enough to do that on the level of associated graded spaces. That is, we only
need to show that Z̄m

n : GmPBn = Im/Im+1 → GmA
pb
n is an isomorphism for every n and m,

where I is the augmentation ideal of PBn.
Let σij with 1 ≤ i < j ≤ n be the standard generators of PBn:

σij =

1 i n

. . . . . . . . .

j

.

In PaB, the parenthesized braid corresponding to σij is a conjugate of an extension of σ2:

σ13 = σ2=

C

C−1

.

As Ẑ(σ2) = R̃2 = expH and Ẑ preserves all structure, we find that

Ẑ(σij − 1) = Ẑ(C)−1(exp tij − 1)Ẑ(C) = tij + (higher terms).

Ergo,

(3) Ẑ
(
(σi1j1 − 1)(σi1j2 − 1) · · · (σikjk − 1)

)
= ti1j1ti1j2 · · · tikjk + (higher terms),

and the maps Z̄m
n are surjective. Furthermore, as we mod out by Im+1, products of the form

(σi1j1 − 1)(σi1j2 − 1) · · · (σimjm − 1)

generate GmPBn, and hence it is enough to verify the injectivity of Z̄m
n on such products.

To do this we attempt to construct an inverse map Y m
n by setting

Y m
n (ti1j1ti1j2 · · · timjm) = (σi1j1 − 1)(σi1j2 − 1) · · · (σimjm − 1).

We only need to show that Y m
n is well defined; i.e., that it carries the relations in GmA

pb
n

to relations in GmPBn. This is a routine verification. For example, if i < j < k, the braid
relation [σjk, σijσik] = 0 (“the third Reidemeister move”) implies [σjk − 1, (σij − 1) + (σik −
1)− (σij − 1)(σik − 1)] = 0. Notice that the last term in this equality lies in a higher power
of the augmentation ideal, and hence it can be ignored. What remains proves that Y m

n maps
the 4T relation [tjk, tij + tik] to 0 in the case when i < j < k. �
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Remark 3.7. In the language of Vassiliev invariants, the last proof is essentially the identifi-
cation of the space of weight systems for pure braids with the dual of Apb. If you know that
language, you may find it amusing to translate the above proof to the Vassiliev setting.

Remark 3.8. Implicitly in the proof of Proposition 3.6 we have also proved that Ĉ is the
“associated graded mathematical structure” of the filtered structure B̂.

Propositions 3.4 and 3.6 imply the following:

Theorem 1. The set ÂSS (ASS(m)) can be identified with the set of all structure-preserving

isomorphisms B̂ → Ĉ (B(m) → C(m)). �

This would not be of much use if it was not for the following theorem, proven by Drin-
fel’d [Dr1, Dr2] using complex-analytic techniques:

Theorem 2. The set ÂSS(C) (and thus ASS(m)) is non-empty. �

This, in turn, allows us to use Principle 1 and get:

Theorem 3. The groups ĜT(C) and ĜRT(C) act simply transitively on ÂSS(C) on the

right and on the left respectively, and their actions commute. The same holds for GT(m)(C),
GRT(m)(C), and ASS(m)(C). �

It is a consequence (and indeed, the purpose) of our main theorem below, that Theorems 2
and 3 also hold over Q.

4. The Main Theorem

4.1. The statement, consequences, and first reduction. Our main theorem is:

Theorem 4. (Proof on page 19) The natural map ASS(m)(C)→ ASS(m−1)(C) is surjective.

This theorem means that an associator can be constructed degree by degree. Furthermore,
if Φm−1 ∈ ASS(m−1) is an associator up to degree m − 1 and Φm = Φm−1 + ϕm, with
degϕm = m, then the equations9 that ϕm has to satisfy for Φm to be an associator up to
degree m are non-homogeneous linear, with a constant term determined algebraically from
Φm−1. Therefore, if a Φm−1 is found over the rationals, then a Φm can be found over the
rationals (i.e., the statement of Theorem 4 also holds over Q). Proceeding using induction,
we find that a rational associator exists (and so Theorems 2 and 3 also hold over Q).

Corollary 4.1. Rational associators exist and can be constructed iteratively. �

Let P be the automorphism of Apb that sends every generator tij to its negative −tij .
It is clear that P preserves ASS(m) (it simply switches the positive and negative hexagon

identities while not touching the pentagon identity). If Φm−1 ∈ ASS(m−1) is even (i.e.,

satisfies Φm−1 = PΦm−1), it can be lifted to an even Φm ∈ ASS(m): Simply take any lifting
Φ′

m and set Φm = (Φ′
m + PΦ′

m)/2. This is an associator because the set of liftings of Φm−1

is affine, as it is determined by the solutions of a non-homogeneous linear equation.

Corollary 4.2. Rational even associators exist and can be constructed iteratively. �

9More on these equations can be found in Drinfel’d [Dr2] and in [B-N2].
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Remark 4.3. Even associators were given a topological interpretation in [LM2], and were
used further in [LMO].

Lemma 4.4. To prove Theorem 4 it is enough to prove that the natural homomorphism
GRT(m)(C)→ GRT(m−1)(C) is surjective.

Proof. By Theorem 2, ASS(m)(C) is non-empty, and so there exists at least one Φm−1 ∈

ASS(m−1)(C) that extends to a Φm ∈ ASS(m)(C). Take now any other element Φ′
m−1 of

ASS(m−1)(C). By Theorem 3, it can be pushed to Φm−1 by some Gm−1 ∈ GRT(m−1)(C).
Take a Gm ∈ GRT(m)(C) that extends Gm−1, and use it to pull Φm back to become an
extension G−1

m Φm of Φ′
m−1, as required. �

4.2. More on the group ĜRT. To prove the surjectivity of GRT(m)(A)→ GRT(m−1)(A)

for some ground algebra A, we need to know some more about GRT(m) = AutC(m) and
about the structure C(m) itself. Recall that the category PaCD is generated by the (re-
peated) di images of the specific morphisms a±1, X and H .

Proposition 4.5. The (repeated) di images of the relations below generate all the relations
between generators of PaCD:

• X is its own inverse and it commutes with H.
• The pentagon d4a ◦ d2a ◦ d0a = d1a ◦ d3a, as for the category PaB.
• The classical hexagon

(4) = ; d1X = a ◦ d0X ◦ a
−1 ◦ d3X ◦ a.

• The semi-classical hexagon (the name is explained in Remark 4.6)

(5) d1







def
= = + ;

d1H ◦ d1X = a ◦ d0H ◦ d0X ◦ a
−1 ◦ d3X ◦ a+ a ◦ d0X ◦ a

−1 ◦ d3H ◦ d3X ◦ a.

• Locality in space as in PaB (but with A,B ∈ {a±1, X,H}).
• Locality in scale:

=
A B C

A B C , =

A B

B A
,

and =

A B

A B
,
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with A,B,C ∈ {a±1, X,H}.

Proof. (sketch) Let TMP be the fibered-linear category freely generated by the repeated di
images of a±1, X and H in PaCD, modulo the relations listed above. There is an obvious
functor F : TMP → PaCD, which is well defined because the relations above are indeed
relations in PaCD (4T is needed to verify the third locality in scale relation with A or
B equal H). The category TMP is graded by declaring that deg a = degX = 0, that
degH = 1, and that the operations di preserve degree. Clearly, the functor F preserves
degrees. We need to show that F is invertible, and we do so by constructing an inverse
G : PaCD→ TMP in steps as follows:

(1) There is no problem with constructing G in degree 0. The relevant generators of TMP

are commutativities X and associativities a±1, and the relevant relations are (some of)
the locality relations and the pentagon and the classical hexagon. Thus the existence of
G in degree 0 is exactly the Mac Lane coherence Theorem [Ma].

Let PaCDr (TMPr) be the algebra of self-morphisms of the object Or = (•(• . . . (••) . . .)) in
PaCD (TMP) that cover the identity permutation in PaP, and let Fr : TMPr → PaCDr

be the obvious restriction of F. Our next objective is to construct Gr, an inverse of Fr.
There is no loss of generality in assuming that all morphisms that we deal with involve
exactly n strands (for some fixed n). With this in mind, the PaCDr can be identified with
Apb

n .

(2) Construct Gr in degree 1. It is enough to specify the image in TMPr of tij ∈ Apb
n , and

to check that Gr is indeed the inverse of Fr in degree 1. So for i < j set G(tij) = P−1
ij ◦

Hn ◦ Pij . Here Hn = dn−1
0 dn−2

0 · · · d20H is H extended by adding strands on the left and
Pij ∈ morTMP(Or, Or) with degPij = 0 corresponds to the parenthesized permutation
that takes the jth strand to be the last and the ith to be the one before the last, while
preserving the order of all other strands. (Step (1) implies that it does not matter which
particular generator combination we choose for Pij). Now Fr ◦Gr = Id is trivial, and
Gr ◦ Fr = Id : TMPr → TMPr is not hard to check. Indeed, a degree 1 morphism
in TMPr contains exactly one (repeated di image of) H . By the semi-classical hexagon
we can replace cabled H ’s by extended ones (terminology as in Definition 2.12), and
extended H ’s can be slid right using locality in scale relations:

adding a thing
and its inverse

sliding
an H

.

Finally, on “right justified” H ’s there is almost nothing to prove.
(3) By extending Gr multiplicatively to higher degrees, we find that the free algebra FT

generated by G1TMPr is isomorphic to the free algebra FA generated by G1A
pb
n . The

algebra TMPr is the quotient of FT by the quadratic locality relations: locality in space
with A = B = H , and the third locality in scale relation with either A = H or B = H .
The algebra G1A

pb
n is the quotient of FA by quadratic relations: the relation [tij, tkl] = 0

and the 4T relation [tjk, tij + tik] = 0. Quite clearly, these relations correspond under

the isomorphisms between FT and FA; the locality relation = , for example, is

sent to the 4T relation. We conclude that the quotients TMPr and A
pb
n are isomorphic

via Fr and Gr.
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Finally, we get back to constructing G:

(4) Every morphism M in PaCD can be written uniquely as a composition P1 ◦ D ◦ P2

where D ∈ Apb
n = PaCDr, P1,2 are of degree 0, and P1 induces the identity permutation

(between possibly different parenthesizations). Define G(M) = G(P1) ◦Gr(D) ◦G(P2).
Clearly, G is the inverse of F. �

Remark 4.6. Let ǫ be a formal parameter satisfying ǫ2 = 0, and let PaCDǫ be defined as
PaCD, only with coefficients in the algebra A[ǫ] rather than the algebra A. Let Rǫ be the
morphism (exp ǫH) ◦X in PaCDǫ, and consider the “quantum” hexagon relation for Rǫ:

d1Rǫ = a ◦ d0Rǫ ◦ a
−1 ◦ d3Rǫ ◦ a.

A quick visual inspection of equations (2) (with Rǫ replacing σ), (4) and (5) reveals that
the classical and semi-classical hexagon relations are the degree 0 and 1 parts (in ǫ) of the
quantum hexagon relation, explaining their names.

Remark 4.7. Modulo the other relations, the semi-classical hexagon is equivalent to the
simpler but less conceptual “cabling relation”, d2H = a−1◦d3H ◦a+d0X ◦a

−1◦d3H ◦a◦d0X :

d2

( )
def
= = + .

By Claim 2.16 and Remark 2.15, any G ∈ GRT(m) is determined by its action on the

generator a of PaCD(m), and thus it is determined by the unique Γ ∈ A
pb(m)
3 for which

G(a) = Γ · a. Just as in the proof of Proposition 3.4, the relations of Proposition 4.5 impose
relations on Γ:

Proposition 4.8. The group GRT(m) (ĜRT) can be identified (as a set) with the set of all

group-like non-degenerate Γ ∈ A
pb(m)
3 (Γ ∈ Âpb

3 ) satisfying:

• The pentagon equation d4Γ · d2Γ · d0Γ = d1Γ · d3Γ.
• The classical hexagon equation 1 = Γ · (Γ−1)132 · Γ312.
• The semi-classical hexagon equation

d1t
12 = Γ ·

(
t23 · (Γ−1)132 + (Γ−1)132 · t13

)
· Γ312,

or, equivalently, the cabling equation d2t
12 = Γ−1 · t12 · Γ + (Γ−1 · t12 · Γ)132.

Proof. The group-like property and the non-degeneracy of Γ correspond to the fact that G
preserves � and the operations si. The pentagon, classical and semi-classical hexagon, and
cabling equations correspond to their namesakes in Proposition 4.5. The other relations
in Proposition 4.5 impose no further constrains on Γ; the locality relations follow from
Lemma 3.5 and the relations X2 = 1 and XH = HX do not involve Γ at all. �

Warning 4.9. The product of GRT(m) (ĜRT) is not the product of Apb(m) (Âpb). See
Proposition 5.1.

Remark 4.10. The classical hexagon axiom for Γ ∈ GRT(m) implies that Γ = 1+(higher
degree terms).
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Remark 4.11. In the spirit of Remark 4.6, the classical and semi-classical hexagon equations

can be replaced by a single “quantum hexagon equation” written in A
pb(m)
3 (A[ǫ]):

(6) eǫ(t
13+t23) = Γ · eǫt

23

· (Γ−1)132 · eǫt
13

· Γ312.

4.3. The second reduction.

Theorem 5. (Proof on page 21) The pentagon and classical hexagon equations for Γ ∈ A
pb(m)
3

imply the semi-classical hexagon equation (and hence the cabling equation).

Assuming Theorem 5, the proof of Theorem 4 reduces to an easy observation and some
standard (but non-trivial) facts from the theory of affine group schemes.

Proof of Theorem 4. By Lemma 4.4, it is enough to show that the natural homomorphism
π : GRT(m)(C) → GRT(m−1)(C) is surjective. In the next paragraph we will show that
π is a homomorphism of connected reduced algebraic group schemes. Hence it is enough
to prove this statement at the level of Lie algebras, and the Lie algebras are given by the
linearizations near the identity 1 of the defining equations, the pentagon and the classical
hexagon. These linearizations are

(7) d4γ + d2γ + d0γ = d1γ + d3γ and 0 = γ − γ132 + γ312.

Clearly, any solution to degree m − 1 of these equations can be extended to a solution to
degree m (for example, by taking the degree m piece to be 0). Notice that if the cabling
relation was still present, this would not have been so easy: The linearization of the cabling
relation is 0 = [t12, γ] + [t13, γ132], and this equation at degree m imposes a (possibly new)
condition on the degree m− 1 piece of γ.

All that is left now is some standard algebraic geometry. We defined GRT(m)(A) for an
arbitrary ground algebra A in a functorial way, and saw that it is always defined by the
same equations (Proposition 4.8). Thus GRT(m) (regarded as a functor from the category
of Q-algebras to the category of groups) is an affine group scheme (see e.g. [Wa, section 1.2])

for any m (and similarly, the map GRT(m) → GRT(m−1) is a homomorphism of affine group

schemes). GRT(m) has a faithful representation in the vector space V of parenthesized chord

diagrams whose skeleton is a (already the action of G ∈ GRT(m) on a itself determines

G). Thus GRT(m) can be regarded as an algebraic matrix group. Notice that for any

G ∈ GRT(m), we have G(X) = X , G(H) = H , and G(a) = a + (higher degrees), and hence
for any homogeneous v ∈ V we have G(v) = v + (higher degrees). Hence G is unipotent,

and GRT(m) is a unipotent group [Wa, section 8]. As we are working in characteristic 0,

GRT(m) is reduced [Wa, section 11.4] (and hence (7) defines its Lie algebra) and GRT(m−1)

is connected [Wa, section 8.5]. �

Remark 4.12. Very little additional effort as in the paragraph following Theorem 4 shows
that GRT(m)(A)→ GRT(m−1)(A) is surjective for any A.

4.4. A cohomological interlude. Before we can prove Theorem 5, we need to know a
bit about the second cohomology of Apb

n . There are two relevant ways of turning the list

Apb
2 , A

pb
3 , . . . into a cochain complex. The first is to define d = dn : Apb

n → Apb
n+1 by

dn =
∑n+1

i=0 (−1)
idni . The second is to define d̃ = d̃n : Apb

n+1 → A
pb
n+2 (notice the shift in

dimension) by d̃n =
∑n+1

i=0 (−1)
id̃ni , where d̃i = d̃ni = dn+1

i for i ≤ n, and d̃n+1 = d̃nn+1 =
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(dn+1
n+2)

12...n(n+2)(n+1) is the operation of “adding an empty strand between strands n and
n+ 1”:

d̃3

( )
= .

For the purpose of proving Theorem 5, all we need is to understand H2
d̃
:

Proposition 4.13. H2
d̃
is 2-dimensional and is generated by t12 (in degree 1) and [t13, t23]

(in degree 2).

Proof. It is well known (see e.g. [Koh, Dr2, Hu, B-N3]) that as vector spaces, Apb
n+1 =

Apb
n ⊗ T V

n, where T V n denotes the tensor algebra on the n-dimensional vector space V n

generated by t1(n+1), . . . , tn(n+1) (as algebras, this is a semi-direct product). Furthermore,

d̃ni and the strand removal operations s̃ni
def
= sn+1

i preserve this decomposition, and define

a structure of a cosimplicial vector space on each of Apb
n+1, A

pb
n , and V n. The cosimplicial

structure induced on Apb
n coincides with the one it already has ((dni , s

n
i )), and hence by the

Eilenberg-Zilber theorem and the Künneth formula

(8) H⋆

d̃
= H⋆

d⊗̂T̂ H
⋆(V ⋆).

(Here ⊗̂ denotes the Z/2Z-graded tensor product and T̂ denotes the tensor algebra formed
using ⊗̂).
Computing H⋆

d : The cohomology H⋆
d is very hard to compute. Indeed, if we could compute

H4
d , we probably needn’t have written this paper at all (see [Dr2, B-N3]). But up to H2

d

there is no difficulty in computing by hand. The algebras Apb
0 and Apb

1 contain only multiples

of the identity element. The algebra Apb
2 contains only the powers of t12. The differential

d0 : Apb
0 → Apb

1 is the zero map, the differential d1 : Apb
1 → Apb

2 is injective, mapping

the identity of Apb
1 to the identity of Apb

2 . Finally, let us study d2(t12)m ∈ Apb
3 . Setting

c = t12 + t13 + t23 ∈ Apb
3 , we get:

d2(t12)m =
3∑

i=0

(−1)id2i (t
12)m = (t23)m − (c− t12)m + (c− t23)m + (t12)m.

The relations of Definition 2.7 (in the case n = 3) can be rewritten in terms of the new

generators t12, t23 and c of Apb
3 . In these terms, they are equivalent to the statement “c is

central”. Thus Apb
3 is the central extension by c of the free algebra in t12 and t23. Looking at

the coefficient of (say) c(t12)(m−1) in d2(t12)m as computed above, we find that d2(t12)m 6= 0
for m ≥ 2. It is easy to verify that d2(t12)m = 0 for m = 0, 1. In summary, we found that

dimH0
d = 1, with the generator being the unit of Apb

0 , that dimH1
d = 0, and that H2

d is one
dimensional and is generated by t12.
Computing H⋆(V ⋆): By the normalization theorem for simplicial cohomology the complex

(V n) has the same cohomology as the complex (V̂ n) defined by Ĉn =
⋂

i ker s̃
n
i . But it is

clear that V̂ n = 0 unless n = 1, and that C̃1 is 1-dimensional. Thus H⋆(V ⋆) has only one
generator, t12 in H1(V ⋆). (The same computation appears in [B-N2, Lemma 4.14]).
Assembling the results: Using (8) and the above two cohomology computations, we find that
H2

d̃
is generated by the class of t12 (coming from H2

d) and a degree 2 class coming from

the class t12 ⊗ t12 in H1(V ⋆)⊗̂H1(V ⋆) via the Künneth map. An explicit computation of
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the latter (or a direct computation of the cycles and boundaries, which is easy in this low
dimension), shows that it is the class of [t13, t23]. �

4.5. Proof of the semi-classical hexagon equation.

Proof of Theorem 5. Assume that for some Γ ∈ A
pb(m)
3 the pentagon and the classical hexagon

hold, but the semi-classical hexagon doesn’t. By Remark 4.11, we know that the quantum
hexagon (6) has an error proportional to ǫ. Let ǫψ′ be that error:

1 + ǫψ′ = Γ · eǫt
23

· (Γ−1)132 · eǫt
13

· Γ312 · e−ǫ(t13+t23).

By assumption, ψ′ 6= 0. Let ψ be the lowest degree piece of ψ′, and let k = degψ. Clearly,
k ≥ 2. From this point on, mod out by degrees higher than k.

We claim that

(9) d̃2ψ = 0.

The proof of (9) is essentially contained in Figure 5. How polyhedra correspond to identities
of this kind was explained in [Dr1], and again in [B-N2], where the very same polyhedron
appeared in a very similar context. For completeness, we include the explanation here, in
a very concrete form. In Figure 5 every edge is oriented and is labeled by some invertible

element of A
pb(m)
4 (A[ǫ]). There are 12 faces in the figure (including the face at infinity).

Each one corresponds to a certain product in A
pb(m)
4 (A[ǫ]) by starting at the ♣ symbol,

going counterclockwise, and multiplying the elements seen on the edges (or their inverses
depending on the edge orientations). These products turn out to all be locality relations, or
pentagons, or quantum hexagons (or a permutation or a cabling/extension operation applied
to a pentagon or a quantum hexagon), as marked within each face.

For example (remember that we are ignoring degrees higher than k),

→ : 1 = d4Γd2Γd0Γ(d3Γ)
−1(d1Γ)

−1,

→ d1 ǫ : 1+d1ψ = d1Γe
ǫt34((d1Γ)

1243)−1eǫ(t
14+t24)(d2Γ)

4123e−ǫ(t14+t24+t34),

→ d2
−1
ǫ : 1−d2ψ = (product around shaded area).

Combining these equations along the common edges we get

→ 1 + d1ψ − d2ψ = (product around shaded area).

Continuing along the same line, we find that the product around the whole figure is 1−d0ψ+
d1ψ − d2ψ. On the other hand, this product is itself a variant of the quantum hexagon —
(d̃3 ǫ)

−1, as marked on the face at infinity. So we learn that 1− d0ψ+ d1ψ− d2ψ = 1− d̃3ψ.
But this is exactly (9).
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(d2Γ)4123

(d3Γ)1243

(d1Γ)4123

d3Γ

d0Γ

(d1Γ)1423
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(d3Γ)4123

(d2Γ)1243

(d1Γ)1243

d4Γ

d4Γ
d1Γ

loc

loc

(d2Γ)1423

1423

(d3Γ)1423
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loc

eǫt
14

eǫt
14

eǫ(t
14+t24+t34)

eǫt
34

eǫt
24

eǫ(t
24+t34)

eǫ(t
14+t24)

eǫt
24

d1 ǫ

eǫ(t
14+t24+t34)

♣

♣

♣

♣
♣

♣

♣

♣

(d2 ǫ)−1 (d0 ǫ)−1

(
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)−1

(
4123

)−1

(d4Γ)1423

eǫt
34

(d4 ǫ)1243=d̃3 ǫ

(d4Γ)1243

(d0Γ)1423

(d0Γ)1243

(d4Γ)4123

Figure 5. The proof of equation (9).

By (9) and Proposition 4.13, we see that if k > 2 then ψ must be in d̃1GkA
pb
2 . That

is, it must be a multiple of χ = d̃1(t12)k. But as Γ is group-like, ψ must be primitive:
�ψ = ψ⊗1+1⊗ψ. One easily verifies that χ is not primitive, and hence ψ = 0 as required.
If k = 2, equation (9) and Proposition 4.13 tell us that ψ is of the form c1d̃

1(t12)2+c2[t
13, t23].

A routine verification shows that if the semi-classical hexagon relation is pre-multiplied by
d3X and post-multiplied by d0X , then modulo the other relations, it does not change. This
means that ψ213 = ψ (this identity follows more easily from the cabling relation), and thus
c2 = 0. But then the primitivity of ψ implies that c1 vanishes as well, and thus ψ = 0 as
required. �

5. Just for completeness

For completeness, this section contains a description of the group law of ĜRT, a descrip-

tion of its action on ÂSS, and similar descriptions for the group ĜT. This information is
not needed in the main part of this paper. Throughout this section one can replace unipotent
completions by unipotent quotients (GRT(m), ASS(m), Apb(m), etc.) with no change to the
results.
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Proposition 5.1. The group law × of ĜRT is expressed in terms of the Γ’s (of Proposi-
tion 4.8) as

(10) Γ1 × Γ2 = Γ1 ·
(
Γ2|t12→Γ−1

1 t12Γ1, t13→(Γ−1
1 )132t13Γ132

1 , t23→t23

)
,

where “·” is the product of Âpb, Γ−1
1 is interpreted in Âpb, and the substitution above means:

replace every occurrence of t12 in Γ2 by Γ−1
1 t12Γ1, etc. (In particular, we claim that this

substitution is well defined on Âpb).

Proof. Âpb
3 can be identified with the algebra of self-morphisms in P̂aCD of the object

(•(••)). Let Γ denote the self-morphism corresponding to a Γ ∈ Âpb
3 . We have Γ · a = a ◦ Γ,

and hence (with Γ 7→ GΓ denoting the identification in Proposition 4.8)

(11) a◦Γ1×Γ2 = GΓ1×Γ2(a) = GΓ1(GΓ2(a)) = GΓ1(a◦Γ2) = GΓ1(a)◦GΓ1(Γ2) = a◦Γ1◦GΓ1(Γ2).

To compute GΓ1(Γ2) we need to write Γ2 in terms of the generators of P̂aCD. This we do

by replacing every t12 appearing in Γ2 by t12 = a−1 ◦ d3H ◦ a, every t
13 by t13 = d0X ◦ a

−1 ◦
d3H ◦ a ◦ d0X , and every t23 by t23 = d0H . By the definition of the action of GΓ1 on the

generators of P̂aCD, we find that it maps t12 to Γ−1
1 t12Γ1, t13 to (Γ−1

1 )132t13Γ132
1 and t23 to

t23. Combining this and (11) we get (10). �

Similar reasoning leads to the following:

Proposition 5.2. The action of ĜRT on ÂSS, written in terms of Γ’s and Φ’s, is given
by

Γ(Φ) = Γ ·
(
Φ|t12→Γ−1

1 t12Γ1, t13→(Γ−1
1 )132t13Γ132

1 , t23→t23

)
,

with products and inverses taken in Âpb
3 . �

The group ĜT admits a similar description. Any element of ĜT maps a to a limit of
formal sums of parenthesized braids whose skeleton is a. Such a limit is of the form a ◦ Σ,

where Σ is a self-morphism whose skeleton is the identity of the object (•(••)) of P̂aB,

regarded as an element of P̂B3. Let σ1 and σ2 be the standard generators and

of the (non-pure) braid group B3 on 3 strands. Every Σ ∈ P̂B3 is a limit of formal sums of
combinations of σ1,2.

Proposition 5.3. (1) ĜT can be identified as the group of all group-like non-degenerate

Σ ∈ P̂B3 satisfying:

• The pentagon for pure braids, in P̂B4:

d4Σ · d2Σ · d0Σ = d1Σ · d3Σ

(with the obvious interpretation for the di’s).

• The hexagons for pure braids, in B̂3, the unipotent completion of B3:

σ2σ1 = Σ · σ2 · Σ
−1 · σ1 · Σ.

(2) The group law is given by

Σ1 × Σ2 = Σ1 ·
(
Σ2|σ1→Σ−1σ1Σ, σ2→σ2

)
,

with products and inverses taken in B̂3.
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(3) The action on ÂSS is given by

(Φ,Σ) 7→ ΦΣ = Φ ·
(
Σ|

σ1→Φ−1et
12/2X1Φ, σ2→et

23/2X2

)
.

This formula makes sense in Âpb
3 ⋊ S3, with X1 = (12) and X2 = (23) the stan-

dard generators of the permutation group S3 which acts on Âpb
3 as in Definition 2.8.

Implicitly we claim that this formula is well defined and valued in Âpb
3 ⊂ Â

pb
3 ⋊S3. �
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