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Abstract. We present a statement about Lie algebras that is equivalent to the Four Color
Theorem.
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1. Introduction

Let us start by recalling a well-known construction that associates to any finite dimen-
sional metrized Lie algebra L a numerical-valued functional WL defined on the set of all
oriented trivalent graphs G (that is, trivalent graphs in which every vertex is endowed with
a cyclic ordering of the edges emanating from it). This construction underlies the gauge-
group dependence of gauge theories in general and of the Chern-Simons topological field
theory in particular (see e.g. [B-N1, AS1, AS2]) and plays a prominent role in the theory of
finite type (Vassiliev) invariants of knots ([B-N2, B-N3, B-N4]) and most likely also in the
theory of finite type invariants of 3-manifolds ([O, GO, R]).

Fix a finite dimensional metrized Lie algebra L (that is, a finite dimensional Lie algebra
with an ad-invariant symmetric non-degenerate bilinear form), choose some basis {La}dim L

a=1

of L, let tab = 〈La, Lb〉 be the metric tensor, let tab be the inverse matrix of tab, and let fabc

be the structure constants of L relative to {La}:
fabc = 〈La, [Lb, Lc]〉.

Let G be some oriented trivalent graph. To define WL, label all half-edges of G by symbols
from the list a, b, c, . . . , a1, b1, . . . , and sum over a, b, . . . , a1, . . . ∈ {1, . . . , dim L} the product
over the vertices of G of the structure constants “seen” around each vertex times the product
over the edges of the t··’s seen on each edge. This definition is much better explained by an
example, as in figure 1.
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Figure 1. An example illustrating the construction of WL(G). Notice that when G is drawn

in the plane, we assume counterclockwise orientation for all vertices (unless noted otherwise),

and that the cyclic symmetry fabc = fbca = fcab of the structure constants and the symmetry

tab = tba of the inverse metric ensures that WL(G) is well defined.

By introducing an explicit change-of-basis matrix as in [B-N2] or by re-interpreting WL(G)
in terms of abstract tensor calculus as in [B-N3], one can verify that WL(G) does not depend
on the choice of the basis {La}. Typically one chooses a “nice” orthonormal (or almost
orthonormal) basis {La}, so that most of the constants tab and fabc vanish, thus greatly
reducing the number of summands in the definition of WL(G).

Unless otherwise stated, whenever dealing with a Lie algebra of matrices, we will take the
metric to be the matrix trace in the defining representation: 〈La, Lb〉 = tr(LaLb).

Lemma-Definition 1.1. (proof in section 2) If a connected G has v vertices, then Wsl(N)(G)

is a polynomial in N of degree at most v
2

+ 2 in N . Thus we can set W top
sl(N)(G) to be the

coefficient of N
v
2
+2 in Wsl(N)(G).

The following statement sounds rather reasonable; it just says that if G is “sl(2)-trivial”,
then it is at least “sl(N)-degenerate”. For us who grew up thinking that all that there is to
learn about sl(N) is already in sl(2), this is not a big surprise:

Statement 1. For a connected oriented trivalent graph G, Wsl(2)(G) = 0 implies W top
sl(N)(G) =

0.

Lie-theoretically, there is much to say about sl(2) and sl(N). There are representations of
sl(2) into sl(N), there is an “almost decomposition” of sl(N) into a product of sl(2)’s1, and
there are many other similarities. A-priori, the above statement sounds within reach. The
purpose of this note is to explain why statement 1 is equivalent to the Four Color Theorem2.

This equivalence follows from the following two propositions, proven in sections 2 and 3,
respectively:

Proposition 1.2. Let G be a connected oriented trivalent graph. If G is 2-connected,
|W top

sl(N)(G)| is equal to the number of embeddings of G in an oriented sphere. Otherwise,

W top
sl(N)(G) = 0.

1See [B-NG] for a similar context in which the different sl(2)’s “decouple”.
2The Four Color Theorem was conjectured by Francis Guthrie in 1852 and proven by K. I. Appel and

W. Haken [AH] in 1976. See also [SK].
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Proposition 1.3. (Penrose [P]. See also [Ka1, Ka2, KS].) If G is planar with v vertices
and Gc is the map defined by its complement, then |Wsl(2)(G)| is 2

v
2
−2 times the total number

of colorings of Gc with four colors so that adjacent states are colored with different colors.

Indeed, statement 1 is clearly equivalent to

|W top
sl(N)(G)| 6= 0 ⇒ |Wsl(2)(G)| 6= 0,

which by propositions 1.2 and 1.3 is the same as saying(
G has a planar embedding

with Gc a map

)
⇒ (Gc has a 4-coloring ) .

Notice that if G is connected, Gc is a map (does not have states that border themselves) iff
G is 2-connected.

Remark 1.4. We’ve chosen the formulation of statement 1 that we felt was the most appeal-
ing. With no change to the end result, one can replace sl(N) = AN−1 by BN , CN , DN , or
gl(N) and sl(2) by so(3) in the formulation of statement 1. In fact, in the proofs we actually
work with gl(N) and so(3) rather than with sl(N) and sl(2).

1.1. Acknowledgement. I wish to thank G. Brinkmann, D. Goldberg, J. Goldman, M.
Hutchings, L. Kauffman, D. P. Thurston and M. Wunderlich for many helpful conversations.

2. Understanding Wsl(N)

As Lie algebras, gl(N) is just sl(N) plus an Abelian factor. As Abelian Lie algebras have
vanishing structure constants, Wsl(N)(G) = Wgl(N)(G) for any oriented trivalent graph G.
So let us concentrate on computing Wgl(N)(G) for such G. For the basis of gl(N), we pick

the matrices {La}N2

a=1 = {Lij}N
i,j=1, where Lij is the matrix with 1 in the ij entry and 0

everywhere else. As the basis is indexed by a double index rather than by a single index, it
is convenient to label every half-edge of G by two symbols from the list i, j, . . . , i1, . . . and
double all the edges:

a b

i

k

l

j
. (1)

The metric tab = t(ij)(kl) of gl(N) is given by t(ij)(kl) = tr LijLkl = δjkδil, and its inverse is
given by the same formula:

t(ij)(kl) = δjkδli.

This formula means that in the summation defining Wgl(N)(G) we can assume the equalities
j = k and l = i along each edge as in (1). In other words, it is enough to label every doubled
edge with just one pair of indices, getting an overall picture like

p

u

i
jk

l

nq r s

t

m

−→
N∑

i,j,... ,u=1

f(ij)(kl)(mn)f(ji)(rs)(ut)f(lk)(tu)(qp)f(nm)(pq)(sr),

where f(ij)(kl)(mn) are the structure constants in our basis:

m

i
jk

l

n

= f(ij)(kl)(mn) = 〈Lij, [Lkl, Lmn]〉 = tr(LijLklLmn)− tr(LmnLklLij)
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= δjkδlmδni − δnkδliδjm =
i−

jk
l

n

i
jk

l

nm m

. (2)

In the last equation, indices connected by a line can be assumed to be equal in the summation
defining Wgl(N)(G). Once the edges and vertices of G are “thickened” as in (1) and (2), the
summation over i, j, . . . becomes the counting of the number of solutions of the equalities
determined by the connected components of the thickened G. This number is simply N
raised to the number of connected components:

u

i
j

p

k
l

nq r s

t

m

−→
N∑

i,j,... ,u=1

δilδlp · · ·

= #

{
1 ≤ i, j, . . . ≤ N :

i = l = p = m = j = t = k = n = r
u = q = s

}
= N2.

Summarizing, we find the formula3

Wgl(N)(G) =
∑

markings M of G

sign(M)N b(TM ), (3)

where:

• A markings M of G is a marking of each vertex of G by a sign in {+,−}, and sign(M)
is the product of these signs.

• The thickening TM corresponding to a marking M is the oriented surface with boundary
obtained from G as follows:
– Replace the vertices marked by a “+” with “joints” and the vertices marked by a

“−” with “twisted joints” as in (2).
– Orient these surface pieces using the following black(b)/white(w) convention for the

thickening of vertices:

−

w w

b+ .

In other words, “+”-vertices are embedded in the thickening of G so that they
are seen as oriented counterclockwise from the white side of the thickening, while
“-”-vertices are seen as oriented clockwise from the white side of the thickening.

– Finally, connect the joints together along the edges of G by bands, in the only way
consistent with the orientations of the joints.

• b(TM) is the number of boundary components of TM .

If M is a marking of G, let SM be the closed oriented surface obtained by gluing a disk
into each boundary component of the thickening TM . With χ denoting Euler characteristic
and g denoting genus, we have

2− 2g(SM) = χ(SM) = χ(TM) + b(TM) = χ(G) + b(TM).

3Compare with [B-N3, equation (36)]; for similar formulas in the cases of so(N) and sp(N), see [B-N3,
equation (33)] and [B-N3, exercise 6.37].
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Remembering that G is trivalent and thus χ(G) = −v
2
, we get

b(TM) = −χ(G) + 2− 2g(SM) =
v

2
+ 2− 2g(SM).

Thus b(TM) is maximal when g(SM) = 0 and in that case b(TM) = v
2

+ 2. With (3), this
proves lemma 1.1. Furthermore, calling a marking M spherical when SM is a sphere, we get
the formula

W top
sl(N)(G) = W top

gl(N)(G) =
∑

spherical markings M of G

sign(M).

Proof of proposition 1.2. Let G be 2-connected, and consider the map

Θ : {spherical markings M of G} −→ {embeddings of G in an oriented sphere}
defined by mapping M to the natural embedding of G in SM . It is clear that Θ is a bijection.
Indeed, if an embedding of G in an oriented sphere S2 is given, one can reconstruct M by
marking the vertices that are oriented counterclockwise within SM (as seen from the white
side of SM) by a “+” sign, and marking all other vertices by a “−”.

To conclude the proof, it is enough to show that for spherical markings, sign(M) is inde-
pendent of the marking. Clearly, sign(M) is also equal to (−1)v− , where v− is the number of
vertices of G that are embedded clockwise in SM by Θ(M) (with SM viewed from its white
side). By a theorem of H. Whitney [W1, W2]4, one can get from any spherical embedding
of a trivalent 2-connected graph G to any other such embedding by a sequence of flips as
in figure 2. Such flips do not change the parity of v−, since the number of vertices that is
flipped is even.

rest of the graphrest of the graph

Figure 2. A flip takes a part of a graph that connects to the rest via only two edges, and

flips it over.

3. Understanding Wsl(2)

Proposition 1.3 is due to Penrose [P] (see also [Ka1, Ka2, KS]). For completeness, we
reproduce its proof in this section.

As Lie algebras, sl(2) is isomorphic to so(3), so let us work with so(3) instead. The
standard basis of so(3) is given by the matrices

L1 =




0 0 0
0 0 −1
0 1 0


 , L2 =




0 0 1
0 0 0

−1 0 0


 and L3 =




0 −1 0
1 0 0
0 0 0


 .

4Check [L, corollary 6] for a version closer to what we need, and remember that our graph is 2-connected
and hence some of the moves in [L] are irrelevant for us.
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Let us pick the scalar product 〈·, ·〉 on so(3) to be the one that makes this basis orthonormal,
and let us denote the corresponding functional on graphs by W

s̃o(3)
, with the “ ˜ ” on top of

the so(3) to remind us that we are not using the standard matrix-trace scalar product.
One can easily verify that 1

2
〈·, ·〉 is the scalar product induced on so(3) from matrix-trace

in sl(2). Thus, remembering that in the construction of WL vertices scale with the scalar
product and edges scale with its inverse, we find that

Wsl(2)(G) =

(
1

2

)v−e

W
s̃o(3)

(G) = 2
v
2 W

s̃o(3)
(G), (4)

where G is an oriented trivalent graph with v vertices and e edges. Let us fix such a G once
and for all, and let us assume that it is planar and that all the vertices of G are oriented
counterclockwise in the plane. Flipping the orientation of any given vertex just reverses the
sign of W

s̃o(3)
(G), and so the latter assumption does not limit the generality of our arguments.

Proof of proposition 1.3. With (4) in mind, proposition 1.3 clearly follows from the following
two lemmas.

Lemma 3.1. (Penrose [P]. See also [Ka1, Ka2, KS].) For a planar G as above, |W
s̃o(3)

(G)|
is the number of colorings of the edges of G with three colors {1, 2, 3}, so that the edges
emanating from any single vertex are of different colors.

Lemma 3.2. (Tait’s theorem [T]) Edge-3-colorings as in the previous lemma are in a bijec-
tive correspondence with 4-colorings of the map Gc that fix the color of the “state at infinity”.

Proof of lemma 3.1. In the basis {La}, the structure constants of so(3) are given by

fabc = εabc =

{
sign(abc) if abc is a permutation,

0 otherwise.

Remembering also that {La} is orthonormal by choice, the computation of W
s̃o(3)

(G) is given

(on a simple example) by:

c

a

f

b

d e

−→
3∑

a,b,c,d,e,f=1

εabcεaefεbfdεcde.

The ε symbols force the indices coming into each vertex to be different, and hence clearly

W
s̃o(3)

(G) =
∑

edge-3-colorings of G

∏
(a sign per vertex) , (5)

where the sign at each vertex is the sign of the permutation of {1, 2, 3} induced by an
edge-3-coloring, as read counterclockwise around the vertex.

The only thing left to show is that the product of signs in (5) is independent of the edge-
3-coloring. A clever way to do that, discovered by L. H. Kauffman, is to replace every edge
colored by a “3” by a pair of edges colored “1” and “2” (in symbols, 1+2 = 3). This defines
two families of circles in the plane, labeled by “1” and by “2” (see figure 3). By lumping
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together the signs on each end of a “3” edge and taking the product over all of those edges,
one sees that the overall sign depends only on the parity of the number of “3” edges (always
e
3
), and the Z/2Z intersection number of the “1” family of circles with the “2” family of

circles. By the Jordan curve theorem, the latter is always 0.

1
2

1
3

1 2

3

1
2

21

2

1

2

Figure 3. The two families of circles obtained by splitting every “3” edge.

Proof of lemma 3.2. This is a well known result (see e.g. [BM, theorem 9.12]), so let us only
sketch the proof. Consider the group H = Z/2Z × Z/2Z. Given any 4-coloring of Gc by
elements of H, one may associate to it an edge-3-coloring of G by the non-zero elements of
H, by coloring every edge by the difference of the colors in the two faces adjacent to it. One
then verifies that this edge 3-coloring is well defined and that we get a bijection between the
set of 4-colorings of Gc that color the state at infinity with 0 and the set of edge-3-coloring
of G.
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