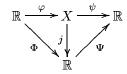
Some Hints for Solutions

1 Exercise #1 in handout #2

- (1) Suppose that $\varphi: \mathbb{R} \to X$ is a diffeomorphism, and let $\psi: X \to \mathbb{R}$ be its inverse. Suppose that $\varphi(0) = 0$.
 - Let $j:X\to\mathbb{R}^2$ be the inclusion map. Then j is smooth (why?).

By the definition of F_X , there exists a smooth map Ψ extending ψ and rendering the following diagram commutative



- (2) $\Psi\Phi = \Psi j\varphi = \psi\varphi = \text{id implies } d$ $Phi_0 \neq 0$, namely $\Phi'(0) \neq 0$.
- (3) Connectedness consideration of $X \{0\}$ and $\mathbb{R} \{0\}$ implies that we may assume $\Phi((-\infty, 0)) \subseteq (-\infty, 0) \times \mathbb{R}$ and $\Phi((0, \infty)) \subseteq (0, \infty) \times \mathbb{R}$. Therefore (explain this)

$$\Phi'(0) = \lim_{t \uparrow 0} \frac{\Phi(t) - \Phi(0)}{t} = (a, -a)$$

$$\Phi'(0) = \lim_{t \downarrow 0} \frac{\Phi(t) - \Phi(0)}{t} = (b, b).$$

It follows that a = b = 0 hence $\Phi'(0) = 0$, a contradiction.

2 Exercise #2 in handout #3

The following argument is due to Yariv. Use paths to represent derivations. The inclusion $j:U\to M$ induces $j_*:T_pU\to T_pM$ via $j_*(D_\gamma)=D_{j\gamma}$.

Define $\pi: T_pM \to T_pU$ as follows. For $\gamma: (-a,a) \to M$ there exists ϵ such that $\gamma((-\epsilon,\epsilon)) \subset U$. Define

$$\pi(D_{\gamma}) = D_{\gamma|_{(-\epsilon,\epsilon)}}.$$

This is independent in the choice of ϵ and of γ (why?). It is almost trivial that j_* and π are inverses of one another.

Another easy proof can be obtained using the definition of the tangent space as in exercise #1 in this handout. Surjectivity of j_* is obvious and dimensional argument concludes.

What I said in class was rubbish. It will make sense when we talk about derivations $C^{\infty}(M) \to C^{\infty}(M)$ which correspond to vector fields. The best is yet to come.

Exercise #3 in handout #3 3

Identify $T_p\mathbb{R}^n$ with \mathbb{R}^n via

$$\frac{\partial}{\partial x_i} \mapsto e_i$$
.

Under this identification, if a path $\gamma:(-a,a)\to\mathbb{R}^n$ represents a tangent vector in $T_p\mathbb{R}^n$, then γ corresponds to $\gamma'(0)$ in \mathbb{R}^n . To see this recall that using the trivial chart on \mathbb{R}^n ,

$$D_{\gamma} = \sum_{i=1}^{n} \frac{d\gamma^{i}}{dt}(0) \frac{\partial}{\partial x_{i}}.$$

In our example

$$\Psi_*(\frac{\partial}{\partial \theta}) \equiv D_{(\sin\varphi\cos(\theta+t),\sin\varphi\sin(\theta+t),\cos\varphi)\subset S^2} \stackrel{j_*}{\to} D_{(\sin\varphi\cos(\theta+t),\sin\varphi\sin(\theta+t),\cos\varphi)\subset \mathbb{R}^3} \sim (-\sin\varphi\sin\theta,\sin\varphi\cos\theta,0)$$

A similar computation shows that

$$\Psi_*(\frac{\partial}{\partial \varphi}) \sim (\cos \varphi \cos \theta, \cos \varphi \sin \theta, -\sin \varphi).$$

One checks directly that these are nonzero orthogonal vectors and both are orthogonal to the vector $\Psi(\theta,\varphi)$.

This argument also shows that the inclusion map $i: S^2 \to \mathbb{R}^3$ is an immersion because S^2 is a 2-dimensional manifold and i_* has a 2 dimensional space as its image. Of course, you may (and better) use the theorem proved in class about the inverse image of a regular value.