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This thesis consists of two parts. In the main part of the thesis we introduce an extension of the Alexander

polynomial to tangles, known as Γ-calculus or Gassner calculus, which has appeared in [BNS13, Hal16]

and various talks by Prof Bar-Natan. Our main object of study is w-tangles, which we describe using

the language of meta-monoids (see [BNS13, BN15a, Hal16]). There is a map from usual tangles to

w-tangles and so an invariant of w-tangles induces an invariant of usual tangles. Using the language

of Γ-calculus, we rederive certain important properties of the Alexander polynomial, most notably the

Fox-Milnor condition on the Alexander polynomials of ribbon knots [Lic97, FM66]. We argue that our

proof has some potential for generalization which may help tackle the slice-ribbon conjecture. In a sense

this thesis is an extension of [BNS13].

In the second part of the thesis, we study the associated graded space of w-tangles, which is the space

of arrow diagrams [BND16, BND14]. We describe an expansion of w-tangles, i.e. a map from w-tangles

to its associated graded space. The concept of expansions is inspired by the Taylor expansions, and

w-tangles have a much simpler expansion than usual tangles (for usual tangles an expansion is given

by the Kontsevich integral [Oht02]). There is a relationship between arrow diagrams and Lie algebras.

Using the expansion of w-tangles we recover Γ-calculus by choosing a particular Lie algebra, namely the

two-dimensional non-abelian Lie algebra. We give a commutative diagram that summarizes the spaces

and maps involved. The second part of the thesis is more or less independent of the first part.
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Chapter 1

Introduction

The Alexander polynomial is one of the most important invariants in knot theory. Originally discovered

by Alexander in 1928 [Ale28], many things are known about the polynomial. For instance, it has a

topological description [Lic97], an interpretation as a quantum invariant [Oht02, KS91], and recently

has been categorified via Heegaard-Floer homology [OS04]. To compute the Alexander polynomial of

a knot with many crossings, one strategy would be to break the knot into smaller pieces called tangles,

find an appropriate extension of the Alexander polynomial to tangles, compute the said extension for

each constituent tangle, and then “glue” the results together. One can obtain an Alexander invariant

of tangles in several ways, which are roughly based on two perpestives: from the quantum invariant

point of view [Oht02, Sar15] or from the topological/combinatorial point of view [CT05, Arc10, Pol10,

BNS13, BCF15, DF16].

One important aspect of knot theory is its implementation on a computer. For that purpose, two

definitions of the Alexander polynomial are particularly useful: in terms of R-matrix, i.e. quantum

invariant [Oht02], or in terms of Fox derivatives [Arc10]. These two formulations come from two

different perspectives. One perspective is based on the theory of quantum groups [Kas95] and the other

perspective is based on the topological definition of the Alexander polynomial, i.e. in terms of the infinite

covering space of the knot complement. In this thesis we introduce a new way to view a tangle: as an

element of a meta-monoid (Section 2.1) [BNS13, Hal16]. Namely, we can just decompose a tangle into a

disjoint union of crossings and then glue, or in our terminology, “stitch” the strands together to recover

the tangle, (with the caveat that we do not stitch the same strand to itself since we do not allow closed

components in the theory). Note that the use of meta-monoid structures allows us to describe a bigger

class of tangles, namely w-tangles (Section 2.2), which include usual tangles.

On the algebraic side we introduce a particular meta-monoid that gives us a tangle invariant known

as Gassner calculus or Γ-calculus (Section 3.1). Roughly speaking, Γ-calculus assigns to a tangle with

n components a Laurent polynomial and an n × n matrix whose entries are rational functions. In the

case where a tangle has only one component, we recover the Alexander polynomial. One can obtain a

topological interpretation of Γ-calculus along the lines of the arguments in [CT05] and [DF16] but we

will not pursue that direction in this thesis. On a computer, Γ-calculus is quite simple to implement (see

Section 3.1 where we also include Mathematica code) and it also runs faster than current algorithms

that compute the Alexander polynomial (although not by a substantial amount). One can think of Γ-

calculus as a generalization of the Gassner-Burau representation [KT08, BN14a] to tangles (compare

1



CHAPTER 1. INTRODUCTION 2

also with [KLW01]). In essence, we break the determinant formula of the Alexander polynomial into

a step-by-step gluing instruction with each step involving some simple algebraic manipulations. This

approach may play a role if one wants to categorify the invariant, which might lead to a simpler way to

approach the formidable Heegaard-Floer homology.

Chapter 6 is the main part of this thesis, which is devoted to giving a new proof of the classical

Fox-Milnor condition for the Alexander polynomials of ribbon (hence slice) knots [Lic97, FM66], using

the formalism of Γ-calculus. Our ultimate goal is to say something about the slice-ribbon conjecture

[GST10], which asks whether every slice knot is also ribbon. Let us give a brief overview of our approach

(see [BN17] for more details). First of all, given a tangle T2n with 2n components, there are two

closure operations, denoted by τ and κ (Section 6.1), which gives an n-component tangle Tn and a

one-component tangle T1, i.e. a long knot, respectively

Tn
τ←− T2n

κ−→ T1.

Or in picture

Now we have the following characterization of ribbon knots (Proposition 6.1), namely a knot K is

ribbon if and only if there exists a 2n-component tangle T2n such that κ(T2n) = K and τ(T2n) is the

trivial tangle. More succinctly, if we denote the set of all m-component tangles by Tm, then

{ribbon knots} =

∞⋃
n=1

{
κ(T2n) : T2n ∈ T2n and τ(T2n) = Un ∈ Tn

}
,

where Un denote the trivial n-component tangle. Therefore if we have an invariant Z : Tk → Ak of

tangles, where Ak is some algebraic space which is well-understood (think of matrices of polynomials),

together with the corresponding closure operations τA and κA which intertwine with τ and κ:

Z(κ(T2n)) = κA(Z(T2n)), Z(τ(T2n)) = τA(Z(T2n)),

then we have an “algebraic criterion” to determine if a given knot K is not ribbon. Specifically, if

a knot K is ribbon then there exist some n and an element ζ ∈ A2n such that Z(K) = κA(ζ) and

τA(ζ) = Idn ∈ An, or more simply

Z(K) ∈
∞⋃
n=1

κA(τ−1
A (Idn)). (1.1)

We denote the set on the right hand side by RA. Of course to have any practical values, we need to

make sure that RA is strictly smaller than A1. Then a knot K is not ribbon if Z(K) 6∈ RA.

In [GST10] the authors propose several potential counter-examples to the slice-ribbon conjecture.

These are knots with a high number of crossings. Our long term goal is to construct a class of invariants

of tangles which are computable in polynomial time and behave well under the closure operations (and

some other operations) in order to test these counter-examples in the framework proposed above (see
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partial progress in [BN16a]). The simplest example of such invariants is Γ-calculus, and condition

(1.1) yields the familiar Fox-Milnor condition, as to be expected since Γ-calculus is an extension of the

Alexander polynomial to tangles.

The two main results in this thesis which are due to the author are

Theorem 1.1 (Unitary Property, see Section 6.2). Let β be a string link and X = {a1, . . . , an} be a finite
set of labels of the bottom endpoints. Let ρ be the induced permutation. Then the bottom endpoints of β
are labeled by (a1, a2, . . . , an) and the top endpoints of β are labeled by (a1ρ, . . . , anρ) and suppose that the
invariant of β in Γ-calculus is

ϕ(β) =


ω a1 · · · an

a1

... M
an

 .

Then we have
(Mρ)∗ΩMρ = Ω(ρ),

and
ω
.
= ω det(Mρ),

where the matrix Ω is given by

Ω =


(1− ta1)−1 0 · · · 0

1 (1− ta2)−1 · · · 0
...

...
. . .

...
1 1 · · · (1− tan)−1


and Ω(ρ) is obtained from Ω by permuting the diagonal entries according to the permutation ρ, i.e.

Ω(ρ) =


(1− ta1ρ)−1 0 · · · 0

1 (1− ta2ρ)−1 · · · 0
...

...
. . .

...
1 1 · · · (1− tanρ)−1

 .

Using the above theorem together with the characterization of ribbon knots (Proposition 6.1) we

obtain a new proof of the Fox-Milnor condition in the framework of Γ-calculus.

Theorem 1.2 (Fox-Milnor [Lic97, FM66], see Section 6.3). If a knot K is ribbon, then the Alexander
polynomial of K, ∆K(t) satisfies

∆K(t)
.
= f(t)f(t−1),

where .
= means equality up to multiplication by ±tn, n ∈ Z and f is a Laurent polynomial.

Although the original proof of the Fox-Milnor condition [FM66] is quite short and elegant, we believe

our new proof offers several advantages as summarized below.

• The original proof also applies to slice knots and so cannot be generalized in order to tackle the

slice-ribbon conjecture. In contrast, our proof uses a characterization of ribbon knots which does



CHAPTER 1. INTRODUCTION 4

not apply to slice knots, so it has potential for generalization. Although in the case of Γ-calculus

we just obtain the Fox-Milnor condition, we hope that the techniques developed in this thesis can

be modified to work with a stronger invariant which will give us a genuine condition to distinguish

the slice and ribbon properties.

• With the framework of Γ-calculus, the bulk of our proof uses just elementary linear algebra, which

is more accessible to the students.

• In our proof we also have an interpretation of the function f . More specifically, f is the invariant

of a tangle obtained from a tangle presentation of the ribbon knot (as given in Proposition 6.1).

So as it stands this thesis serves as a warm-up step in a long project and it also presents Γ-calculus

(or meta-monoids in general) as a useful framework to study knot theory, which may deserve more

attention.

In Chapter 4 and Chapter 5 we also explain the general framework that produces Γ-calculus as the

end result. Although one can define Γ-calculus simply by giving the formulas, it is always instructive to

know where these formulas come from. The construction is based on two fundamental ideas: expansions

and the relationship between knot theory and Lie algebras. The concept of an expansion is inspired

mainly by Taylor expansions and the Kontsevich integral (see [Oht02, BN95, CDM12]) in knot theory.

Roughly speaking an expansion converts an object to a graded object. Graded objects are more desirable

to work with since we can study them degree by degree. In the case of Taylor expansions, we turn

an analytic function into a power series which is graded by the power of the variable. In the case of

the Kontsevich integral, we turn a knot into a series in chord diagrams which is graded by the number

of chords. An expansion maps a space to its associated graded space, which is our main object of

study. For the space of isotopy classes of knots, its associated graded is the space of chord diagrams (see

[BN95, CDM12]). The formula of the Kontsevich integral is highly non-trivial and its extension to tangles

requires the use of a sophisticated technology known as a Drinfeld associator (see [BN97, Oht02]). In

this thesis we will perform a similar analysis for w-tangles (Section 2.2). For w-tangles, its associated

graded space is the space of arrow diagrams (Section 4.2). An expansion of w-knots is much more

straightforward than an expansion of usual knots. Moreover the procedure naturally extends to w-

tangles, without the necessity of a Drinfeld associator.

Let us give a quick executive summary of the thesis. In Chapter 2 we give the main definitions

and properties of meta-monoids as well as some main examples. This chapter is mainly expository and

contains no new results. The concept of meta-monoids was invented by Prof Bar-Natan and has appeared

in various papers by himself and his students [BNS13, Hal16, BN15a].

In Chapter 3 we describe our main meta-monoid: Γ-calculus and derive various formulae therein.

Again the materials in this chapter are standard and has appeared in [BNS13, Hal16]. We present a

streamlined introduction to Γ-calculus and fill in some missing details. Two main results in this chapter

which are due to the author are the stitching-in-bulk formula (Proposition 6.1), which is used quite

often in subsequent chapters, and the fact that Γ-calculus indeed computes the Alexander polynomial

(Proposition 3.8). (The fact that Γ-calculus computes the Alexander polynomial has been proven in

[BNS13, BN15a, BND16]. Here we provide an alternative proof directly from Γ-calculus.)

In Chapter 4 we introduce the general algebraic framework that gives rise to Γ-calculus: algebraic

structures and expansions. There we study the meta-monoid of arrow diagrams. The key result is that

arrow diagrams form the associated graded space for w-tangles (Proposition 4.2). This chapter is mainly
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expository, the concepts of expansion and arrow diagrams have appeared in various papers by Prof

Bar-Natan and collaborators [BND14, BND16].

In Chapter 5 we explain the connection between arrow diagrams and Lie algebras. Specifically

we describe a map from arrow diagrams to Lie algebras. Then we specialize to the Lie algebra g0

and describe various formulas that allow ones to do computations with exponential series in g0. The

materials here have been given in various talks by Prof Bar-Natan. The relationship between g0 and Γ

have appeared implicitly in various papers by Prof Bar-Natan. What the author contributes here is to tie

everything together and give a succinct description via the commutative diagram

W
ψ

((ϕ

!!

Z // Aw
Tg0 // U(g0)

G0

ι

OO

η
��

Γ̃

This is the content of Proposition 5.9.

Chapter 6 is the main main part of this paper where we introduce ribbon knots and prove the Fox-

Milnor condition. The materials presented in this chapter are new, which include the two main theorems

which are due to the author. Although some key lemmas leading to the proofs are inspired by ideas from

Prof Bar-Natan.

Finally in Chapter 7 we show how one can extend the scalar part of Γ-calculus to links and derive the

classic Alexander-Conway skein relation (Proposition 7.5). Again this chapter is mainly expository and

is quite independent of the other chapters. We end the thesis with some possible directions for future

research.

Notice that Mathematica codes are given at various places throughout this thesis. We emphasize

again that this is one advantage of Γ-calculus, where we can verify certain properties simply by using

Mathematica. To help the readers better navigate this thesis, we provide a summary of the dependence

of the chapters in the diagram below. Observer that after Chapter 3 the thesis veers off in three different

directions which are independent of each other. A reader interested in the application of Γ-calculus to

ribbon knots can just read Chapters 1, 2, 3, 6 without losing any understanding.
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Conventions. In this paper we use the Mathematica notation � to denote compositions of functions

because we find that it is more natural to read composition in this way and also easier to convert the

formulas to Mathematica commands. Specifically,

f � g := g ◦ f.

Also a bold-faced letterletterletter will general denote a matrix, or in particular a vector, whose dimension depends

on the context.



Chapter 2

Meta-Monoids

2.1 Definitions

In this section we introduce the central concept of this thesis: meta-monoids. Meta-monoids first ap-

peared in the paper [BN15a] by Prof Bar-Natan. When one reads the definition of a meta-monoid given

below, it is instructive to keep a concrete example in mind by comparing the notations with Example

2.1. Given any monoid one can obtain a meta-monoid, and in fact that is where the name meta-monoid

comes from.

Consider the collection C of all finite subsets X of some fixed set Z (if we do not specify Z, take it to

be the set of natural numbers). A meta-monoid indexed by C (see [BNS13, BN15a, Hal16]) is a collection

of sets {GX}, one for each finite set X of labels, together with the following maps, which we also call

operations:

• stitching mx,y
z : G{x,y}∪X → G{z}∪X , whenever {x, y, z} ∩X = ∅ and x 6= y,

• identity ex : GX → G{x}∪X , whenever x /∈ X,

• deletion ηx : GX∪{x} → GX , whenever x /∈ X,

• renaming σxz : GX∪{x} → GX∪{z}, whenever {x, z} ∩X = ∅.

• disjoint union t : GX × GY → GX∪Y , whenever X ∩ Y = ∅,

These operations satisfy the following axioms1:

• Monoid axioms:

mx,y
u �mu,z

v = my,z
u �mx,u

v (meta-associativity),

ea �ma,b
c = σbc (left identity),

eb �ma,b
c = σac (right identity),

• Miscellaneous axioms:

ea � σab = eb, σab � σ
b
c = σac , σab � σ

b
a = Id,

1In this thesis we use the notation � to denote function compositions, namely f � g = g ◦ f .

7



CHAPTER 2. META-MONOIDS 8

σab � ηb = ηa, ea � ηa = Id, ma,b
c � ηc = ηb � ηa,

ma,b
c � σcd = ma,b

d , σab �m
b,c
d = ma,c

d .

We also require that operations with distinct labels commute, for instance ηa�ηb = ηb�ηa orma,b
c �md,e

f =

md,e
f �ma,b

c etc. Moreover, the disjoint union operation t commutes with all other operations, for example

t �ma,b
c �md,e

f = (ma,b
c ,md,e

f ) � t.

We denote a meta-monoid (GX ,mx,y
z , ex, ηx, σ

x
z ,t) simply by G. Given two meta-monoids G and H,

a meta-monoid homomorphism is a collection of maps {fX : GX → HX}, one for each finite set X, that

intertwine with the operations. This means, for instance, that for ζ ∈ G{a,b}∪X , we have

ζ �ma,b
c � f{c}∪X = ζ � f{a,b}∪X �ma,b

c .

One can write down similar equations for the other operations.

In practice, usually the only non-trivial relation we have to check is meta-associativity. While the

definition of a meta-monoid is quite lengthy, a couple of examples will make it clear how to think about

meta-monoids and where the name comes from.

Example 2.1 (Monoids). Given a monoid G with identity e (or an algebra), one obtains a meta-monoid

G as follows. For a finite set X of labels, set

GX := {functions f : X → G}.

We write a function f : X → G explicitly as {x 7→ gx, . . . }, where x ∈ X and gx ∈ G. In the following

operations, ellipses “. . . ” denotes the remaining entries that we do not care about, which stay unchanged

under the various operations:

{x 7→ gx, y 7→ gy, . . . } �mx,y
z = {z 7→ gxgy, . . . },

{y 7→ gy, . . . } � ex = {x 7→ e, y 7→ gy, . . . },

{x 7→ gx, y 7→ gy, . . . } � ηx = {y 7→ gy, . . . },

{x 7→ gx, . . . } t {y 7→ gy, . . . } = {x 7→ gx, . . . , y 7→ gy, . . . },

{x 7→ gx, . . . } � σxz = {z 7→ gx, . . . }.

Let us check meta-associativity. Suppose Ω ∈ GX∪{x,y,z} and we only write the relevant entries, the

others are left unchanged:

Ω = {x 7→ gx, y 7→ gy, z 7→ gz}.

Then

Ω �mx,y
z �mu,z

v = {v 7→ (gxgy)gz},

and

Ω �my,z
u �mx,u

v = {v 7→ gx(gygz)}.

Thus we see that meta-associativity follows from the associativity of multiplication (gxgy)gz = gx(gygz).

Similarly the left identity and right identity are consequences of eg = ge = g for all g ∈ G. The other

axioms are straightforward to verify. In general, mx,y
z 6= my,x

z , unless G is commutative. This meta-
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monoid also satisfies the following property:

Ω = (Ω � ηy) t (Ω � ηx), Ω ∈ G{x,y}. (2.1)

Indeed if Ω = {x 7→ gx, y 7→ gy}, then Ω � ηy = {x 7→ gx} and Ω � ηx = {y 7→ gy} and so the right hand

side is exactly Ω. Most examples of meta-monoids will not satisfy this property, and so we see that not

every meta-monoid comes from a monoid in the above manner. ♣

Example 2.2 (Groups (see also [BNS13])). Consider the meta-monoid G given as follows. For a finite

set of labels X let GX consist of triples of the form (F, µ, λ), where F is a finitely presented group and

µ : X → F , x 7→ µx and λ : X → F , x 7→ λx are functions X → F (µ is called a meridian map and λ is

called a longitude map). Now the operations are

(F, µ, λ) �mx,y
z = (F/

〈
µy = λ−1

x µxλx
〉
, µ \ {x 7→ µx, y 7→ µy} ∪ {z 7→ µx},

λ \ {x 7→ λx, y 7→ λy} ∪ {z 7→ λxλy}),

(F, µ, λ) � ex = (F ∗ 〈x〉 , µ ∪ {x 7→ x}, λ ∪ {x 7→ e}),

(F, µ, λ) � ηx = (F/ 〈µx = 1〉 , µ \ {x 7→ µx}, λ \ {x 7→ λx}),

(F, µ, λ) t (F ′, µ′, λ′) = (F ∗ F ′, µ ∪ µ′, λ ∪ λ′),

(F, µ, λ) � σxz = (F, µ \ {x 7→ µx} ∪ {z 7→ µx}, λ \ {x 7→ λx} ∪ {z 7→ λx}).

We leave the verification of the axioms to the reader. Notice that property (2.1) does not hold here, for

instance consider an element Ω of G{x,y} given by

Ω = (〈x〉 ⊕ 〈y〉 , {x 7→ 1, y 7→ 1}, {x 7→ 1, y 7→ 1}).

Then we see that

(Ω � ηx) t (Ω � ηy) = (〈x〉 ∗ 〈y〉 , {x 7→ 1, y 7→ 1}, {x 7→ 1, y 7→ 1})

which is not the same as Ω. ♣

2.2 The meta-monoid of w-tangles

In this section we define w-tangles following [BND14]. The theory of w-tangles is closely related to the

theory of virtual knots (see [Kau12]).

Let X = {a1, . . . , an} be a finite set of n distinct labels. A w-tangle diagram labeled by X is a general

position smooth immersion of n oriented intervals {Ia1 , . . . , Ian} into R2, where the set of double points

are divided into positive crossings , negative crossings , and virtual crossings . We call

the immersion of each interval a component (or a strand) of the tangle diagram. We also require the

endpoints of the intervals to be distinct and lie in a fixed “circle at∞”. As an example, the following is

a w-tangle diagram whose three components are labeled by X = {x, y, z}.
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Two w-tangle diagrams are equivalent (or isotopic) if they are related by planar isotopy and a finite

sequence of moves given as follows.

For the endpoints on the “circle at∞” we also impose the relation

(Informally it means we allow the endpoints at∞ to move up to virtual crossings.) Note that we impose

the OC relations but not the UC relations (OC stands for overcrossings commute and UC stands for

undercrossings commute [BND16], they are also known as the forbidden moves in [Kau12]).

We call an equivalence class of w-tangle diagrams a w-tangle. Note that we also did not impose the

Reidemeister 1 relations, so technically we are working with “framed” w-tangles.

A w-tangle with only one component is called a long w-knot. A long (usual) knot diagram is a general

smooth immersion of an interval into R2 where the set of double points only contains positive crossings

and negative crossings (no virtual crossings) and the endpoints lie on a fixed “circle at ∞”. Two long

knot diagrams are equivalent if they are related by a finite sequence of R2 and R3 moves (no virtual

moves). A long (usual) knot is an equivalence class of long usual knot diagrams. There is a map from

long knots to long w-knots given by viewing a long knot diagram as a long w-knot diagram. So in

particular an invariant of long w-knots induces an invariant of long knots.

Similarly the definition of a (usual) tangle diagram is the same as the definition of a w-tangle dia-

gram, except that the set of double points does not contain virtual crossings. Two tangle diagrams are

equivalent if they are related by a finite sequence of R2 and R3 moves (no virtual moves). A (usual)
tangle is an equivalence class of tangle diagrams. There is a map from tangles to w-tangles given by
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viewing a tangle diagram as a w-tangle diagram. So in particular an invariant of w-tangles induces an

invariant of tangles.

Now we would like to introduce our main object of study: the meta-monoid W of w-tangles. Specif-

ically, for a finite set X of labels, let WX be the collection of w-tangles with |X| (here |X| denotes the

number of elements of X) components which are labeled by the elements of X. Now let us specify the

meta-monoid operations, which all have explicit geometric descriptions in this context (strictly speaking

these operations are defined on a w-tangle diagram representative of a w-tangle, but one can verify

easily that they are well-defined).

• Stitching mx,y
z means connecting the head of component x to the tail of component y and calling

the resulting component z. Note that the stitching is done in a trivial manner, this means no new

crossings are created other than virtual crossings, and if component x and component y are far

away, we can always bring them together via virtual crossings. From now on we use dashed lines

to mean that the components can be knotted within the tangle.

• Identity ex means adding a trivial component labeled x which does not cross any other component.

• Deletion ηx means deleting component x from the w-tangle.

• Disjoint union tmeans putting the two w-tangles side by side. To simplify notation, we abbreviate

T1 t T2 as just T1T2.

• Renaming σxz means relabeling component x to component z.

Then we can verify the main meta-monoid axioms visually as follows.

• The meta-associativity relation:
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• The left identity relation:

• The right identity relation:

In the framework of meta-monoids, a w-tangle can be described as follows. Given a w-tangle, we

can first decompose it into a disjoint union of positive crossings R+
i,j and negative crossings R−i,j:

Here i is the label of the over-strand and j is the label of the under-strand. Note that the label of the

over-strand is always the first subscript of a crossing. Then we obtain the original w-tangle by stitching

the crossings appropriately. For a concrete example, let us look at the long figure-eight knot:

1

2

3

4

56

7

8

We can label the long figure-eight knot as in the above figure, namely we label the incoming arc with

1 and every time we go over or under an arc, we increase the label. Then we can break the long

figure-eight knot as a disjoint union of crossings:

R+
1,6R

+
5,2R

−
3,8R

−
7,4.
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The long figure-eight knot consists of four crossings: two positive and two negative. To recover the knot,

we stitch strand 1 to strand 2 through to strand 8, at each step calling the resulting strand 1. Therefore

the long figure-eight knot is given by

R+
1,6R

+
5,2R

−
3,8R

−
7,4 �m

1,2
1 �m1,3

1 �m1,4
1 �m1,5

1 �m1,6
1 �m1,7

1 �m1,8
1 .

We can then summarize the above observation in the following proposition.

Proposition 2.1 ([BN15a, BND14]). Every w-tangle can be obtained from a disjoint union of positive
crossings and negative crossings and a sequence of stitching operations.

Remark 2.1. From the above proposition in order to define a meta-monoid homomorphism of w-tangles,

we just need to specify the images of the crossings and verify that the relations R2, R3, and OC are

satisfied.

The next proposition will not be needed in the rest of the thesis. It is a generalization of knot groups

to w-tangles.

Proposition 2.2 ([BN15a]). There is a meta-monoid homomorphism from the meta-monoid of w-tangles
W to the meta-monoid of groups G given in Example 2.2.

Proof. Given a w-tangle T , we can compute its fundamental group F = π1(T ) using the Wirtinger

presentation [Rol03] (ignore virtual crossings). Then µ and λ are the images of the meridians and

longitudes in F . More specifically, taking as the basepoint our eyes, for a strand labeled x, µx is the

loop starting from the basepoint to the right of the tail of strand x, going perpendicularly to the left

under strand x and then back to the base point. For the longitudes, let λx be the loop starting from

the basepoint to the right of the tail of strand x and then going along a parallel copy of strand x to the

head of strand x and then back to the basepoint (here we use the blackboard framing convention). For

example, the image of the positive crossing R+
i,j is

R+
i,j 7→ (〈µi〉 ∗ 〈µj〉 , {i 7→ µi, j 7→ µj}, {i 7→ 1, j 7→ µi}).

We leave it to the readers to verify the operations and the axioms. (An observant reader will realize that

(F, µ, λ) is the peripheral system of a tangle.)



Chapter 3

The Gassner Calculus Γ

3.1 Definition and Properties of Gassner Calculus

In this section we introduce a meta-monoid that will serve as the target space of an algebraic invariant

for w-tangles, known as Γ-calculus (see [BNS13, Hal16]). Let Γ be the meta-monoid given as follows.

For a finite set X of labels, let RX be Q({ti : i ∈ X}), the field of rational functions in the variables ti,

i ∈ X, and MX×X(RX) be the collection of |X| × |X| labeled matrices with rows and columns labeled

by the elements of X. Suppose that the set X has the form X = {a, b} ∪ S, where S ∩ {a, b} = ∅. An

element of RX ×MX×X(RX) is a pair consisting of an element ω in RX , which we call the scalar part,
and an element in MX×X(RX), which we call the matrix part, and can be represented as

ω a b S

a α β θ

b γ δ ε

S φ ψ Ξ

 .

Let us explain a bit about the notations. Here θ and ε are row vectors (notice the horizontal line in each

letter), whereas φ and ψ are column vectors (notice the vertical line in each letter) and Ξ is a square

matrix (as evident from the shape of the letter Ξ). In most cases the rows and columns of a labeled

matrix have the same order of labels, but occasionally we also allow permutations of the labels. If the

labels are clear from the context sometimes we will omit the labels to simplify notations.

Now let ΓX be the subset of RX ×MX×X(RX) that satisfies the condition(
ω X

X M

)
ti→1

=

(
1 X

X I

)
.

Here ti → 1 means substituting all the variables ti by 1 for i ∈ X and I is the identity matrix. In

particular, we see that the matrix part is always invertible (since the determinant is not identically 0).

Then the operations in a meta-monoid are given by, where ta → tb means substituting ta by tb:

• identity:

(
ω X

X M

)
� ea =

 ω a X

a 1 000

X 000 M

, where a 6∈ X,

14
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• disjoint union:

(
ω1 X1

X1 M1

)
t

(
ω2 X2

yX2
M2

)
=

 ω1ω2 X1 X2

X1 M1 000

X2 000 M2

, where X1 ∩X2 = ∅,

• deletion:

 ω a S

a α θ

S φ Ξ

 � ηa =

(
ω S

S Ξ

)
ta→1

,

• renaming:

 ω a S

a α θ

S φ Ξ

 � σab =

 ω b S

b α θ

S φ Ξ


ta→tb

,

• stitching: 
ω a b S

a α β θ

b γ δ ε

S φ ψ Ξ

 �ma,b
c =

 (1− γ)ω c S

c β + αδ
1−γ θ + αε

1−γ
S ψ + δφ

1−γ Ξ + φε
1−γ


ta,tb→tc

. (3.1)

Here by 000 we denote a matrix of zeros whose size depending on the context. One can think of the

stitching operation as a two-step process, the first step is the algebraic manipulation, and the second

step is the change (or rename) of the variables. Before proceeding I need to verify that the stitching

operation is well-defined.

Lemma 3.1. The stitching operation (3.1) is well-defined, i.e. with the notations as above, γ 6= 1, and
when all ti → 1, the right hand side satisfies the condition that the matrix part is 1 and the scalar part is
the identity matrix.

Proof. First of all, observe that from the left hand side we have (1−γ)|ti→1 = 1. So 1−γ is not identically

0 and so it makes sense to divide by 1 − γ. It also follows that (1 − γ)ω|ti→1 = ω|ti→1 = 1. Now when

all the variables are set to 1, we have α = δ = 1, β, θ, γ, ε, φ, ψ all vanish, and Ξ is the identity matrix.

Plugging these into the matrix after stitching we obtain the identity matrix, as required.

Remark 3.1. The stitching formula may seem mysterious at first. Nevertheless it has an elementary

interpretation in terms of linear algebra. This interpretation is heuristic and aims to provide intuition,

which follows ideas of Prof Bar-Natan. Its meaning will be clearer when we construct a map from

w-tangles to Γ-calculus. Concretely, we can think of the matrix part of an element of ΓX
ω a b S

a α β θ

b γ δ ε

S φ ψ Ξ


as an “operator” M with input strands labeled by ya, yb, yS and output strands labeled by xa, xb, xS . In

other words, the strands are labeled by {a, b} ∪ S. We label the tail of strand a by ya and the head of

strand a by xa.
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In the language of linear algebra we have a system of equations
ya = αxa + βxb + θxS ,

yb = γxa + δxb + εxS ,

yS = φxa + ψxb + ΞxS .

Now the stitching operation ma,b
c can be interpreted as connecting the head of strand a to the tail of

strand b and labeling the resulting strand c

In terms of linear algebra we obtain the extra equation yb = xa. Plugging it in the second equation we

obtain

xa = γxa + δxb + εxS , i.e. xa =
δ

1− γ
xb +

ε

1− γ
xS .

It follows that ya =
(
β + αδ

1−γ

)
xb +

(
θ + αε

1−γ

)
xS

yS =
(
ψ + δφ

1−γ

)
xb +

(
Ξ + φε

1−γ

)
xS

Finally, since the new strand is labeled c, we need to rename the variables on strand a and strand b,

namely substituting ta and tb by tc, and changing ya to yc, xb to xc:
yc =

(
β + αδ

1−γ

)
ta,tb→tc

xc +
(
θ + αε

1−γ

)
ta,tb→tc

xS

yS =
(
ψ + δφ

1−γ

)
ta,tb→tc

xc +
(

Ξ + φε
1−γ

)
ta,tb→tc

xS

which is precisely the stitching formula for the matrix part.

To see that Γ is indeed a meta-monoid, we need to check the meta-associative condition. Recall that

meta-associativity means that

ζ �ma,b
b �mb,c

a = ζ �mb,c
b �ma,b

a , ζ ∈ ΓX .

In words, it says that stitching strand a to strand b and then strand b to strand c is the same as stitching

strand b to strand c and then strand a to strand b. One can check meta-associativity by hand. However for

our use later I will develop the formalism of stitching many strands at once, and then meta-associativity

will follow as a special case. An impatient reader can just skim through the formulas presented in the

next few pages and jump through Proposition 3.2.
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Consider an element ζ of ΓX given by

ζ =

(
ω X

X M

)

and given three vectors aaa = (a1, a2, . . . , an), bbb = (b1, b2, . . . , bn), and eee = (e1, e2, . . . en) where ai, bj , ek ∈
X. Suppose we want to stitch strand a1 to b1 and call the resulting strand e1, strand a2 to b2 and call

the resulting strand e2, . . . , strand an to bn and call the resulting strand en in that order. So we have a

composition of stitching operations

ma1,b1
e1 �ma2,b2

e2 � · · · �man,bn
en .

We denote the composition of these operations simply by maaa,bbb
eee . There are some conditions that aaa,bbb,eee

should satisfy. We describe those conditions by first putting aaa,bbb,eee in a matrixa1 a2 · · · an

b1 b2 · · · bn

e1 e2 · · · en

 .

We require that ai 6= aj and bi 6= bj and ai 6= bi. The vector eee satisfies some straightforward consistency

condition. For instance if we have a submatrix of the formai · · · aj

bi · · · bj

ci · · · cj


and bi = aj , then ci = cj . To avoid stitching the same component to itself, we do not allow submatrix of

the form (
ai · · · aj

bi · · · bj

)
where (bi, . . . , bj) is a permutation of (ai, . . . , aj). For instance, the following matrix1 2 4

2 3 5

1 1 4


represents the following stitching sequence:

In order to describe the stitching-in-bulk formula it is convenient to rearrange the matrix part as
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follows. Let ccc = X \ aaa and ddd = X \ bbb, we can then rewrite ζ as ω aaa ccc

bbb γ ε

ddd φ Ξ

 .

As in the case of stitching, we describe the stitching-in-bulk formula in two steps, the algebraic manipu-

lation step and the change-of-variable step. Now I will record and prove the stitching-in-bulk formula in

the next proposition.

Proposition 3.1 (Stitching in Bulk). With the above data we have ω aaa ccc

bbb γ ε

ddd φ Ξ

 maaa,bbbeee−−−→

(
ω det(I − γ) ccc

ddd Ξ + φ(I − γ)−1ε

)
, (3.2)

where I denotes the n × n identity matrix. To obtain the final result we relabel the vectors ccc,ddd using the
rules ai, bi → ei and we change the variables tai , tbi → tei .

Proof. We will prove the formula by induction on the number n of strands being stitched. When n = 1,

let us show that we recover the stitching formula (3.1). Suppose we want to stitch strand a to strand b,

we first rearrange the matrix part as follows.
ω a b S

b γ δ ε

a α β θ

S φ ψ Ξ

 .

Then under ma,b
c we have ω 7→ ω(1− γ), and ω(1− γ) b S

a
(
β θ

ψ Ξ

)
+

(
α

φ

)
(1− γ)−1

(
δ ε

)
S

 =

 ω(1− γ) b S

a β + αδ
1−γ θ + αε

1−γ
S ψ + δφ

1−γ Ξ + φε
1−γ

 .

Then if we label the resulting strand c we need to make the substitutions a→ c, b→ c, ta → tc, tb → tc,

which yields the stitching formula (3.1). Now for the induction step, we write aaa = (aaa′, an), bbb = (bbb′, bn),

and eee = (eee′, en) then from the inductive hypothesis maaa′,bbb′

eee′ is given by
ω aaa′ an ccc

bbb′ γ1 γ2 ε1

bn γ3 γ4 ε2

ddd φ1 φ2 Ξ

 ma
aa′,bbb′

eee′−−−−→

 ω det(I − γ1) an ccc

bn γ4 + γ3(I − γ1)−1γ2 ε2 + γ3(I − γ1)−1ε1

ddd φ2 + φ1(I − γ1)−1γ2 Ξ + φ1(I − γ1)−1ε1

 .

To obtain maaa,bbb
eee we stitch strand an to strand bn using formula (3.1) and the result is(

ω(1− γ4 − γ3(I − γ1)−1γ2) det(I − γ1) ccc

ddd Ξ + φ1(I − γ1)−1ε1 + (φ2+φ1(I−γ1)−1γ2)(ε2+γ3(I−γ1)−1ε1)
1−γ4−γ3(I−γ1)−1γ2

)
.
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To finish the induction step we need to show that the above is the same as
ω det

[
I −

(
γ1 γ2

γ3 γ4

)]
ccc

ddd Ξ +
(
φ1 φ2

)(
I −

(
γ1 γ2

γ3 γ4

))−1(
ε1

ε2

)
 .

For that we record the following elementary result from linear algebra (see [Pow11])

Lemma 3.2 ([Pow11]). Consider the block matrix(
A B

C D

)

where A and D are square matrices not necessarily of the same size and D is invertible. Then

det

(
A B

C D

)
= det(A−BD−1C) det(D).

Proof of lemma. It is easy to check that(
A B

C D

)(
I 0

−D−1C I

)
=

(
A−BD−1C B

0 D

)
.

Now taking the determinant of both sides and using the fact that the determinant of a block triangular

matrix is the product of the determinants of the diagonal blocks (one can prove this by induction) we

obtain the required identity.

Back to our proof, from the above lemma we have that

det

[
I −

(
γ1 γ2

γ3 γ4

)]
= det

(
I − γ1 −γ2

−γ3 1− γ4

)
= det

(
1− γ4 −γ3

−γ2 I − γ1

)
= det(1− γ4 − γ3(I − γ1)−1γ2) det(I − γ1),

which agrees with the scalar part. Now for the matrix part, we have to show that(
I − γ1 −γ2

−γ3 1− γ4

)−1

=

(
(I − γ1)−1 + (I−γ1)−1γ2γ3(I−γ1)−1

1−γ4−γ3(I−γ1)−1γ2

(I−γ1)−1γ2
1−γ4−γ3(I−γ1)−1γ2

γ3(I−γ1)−1

1−γ4−γ3(I−γ1)−1γ2
1

1−γ4−γ3(I−γ1)−1γ2

)
,

which we can verify directly by computing the products of matrices. Finally we change the labels and

the variables in a straightforward manner.

Remark 3.2. Let me present a heuristic argument to arrive at formula (3.2). Using the linear algebra

interpretation the matrix part gives us the system of equationsybbb = γxaaa + εxccc,

yddd = φxaaa + Ξxccc.
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Now the stitching instruction yields the equation ybbb = xaaa. Thus the first equation becomes

xaaa = γxaaa + εxccc, or xaaa = (I − γ)−1εxccc.

Plugging it in the second equation we obtain

yddd = (Ξ + φ(I − γ)−1ε)xccc,

as required. I then obtain the following corollary.

Corollary 3.1. When ai 6= bj for 1 ≤ i, j ≤ n, we have the following stitching formula
ω aaa bbb S

aaa α β θ

bbb γ δ ε

S φ ψ Ξ

 maaa,bbbccc−−−→

 det(I − γ)ω ccc S

ccc β + α(I − γ)−1δ θ + α(I − γ)−1ε

S ψ + φ(I − γ)−1δ Ξ + φ(I − γ)−1ε


taaa,tbbb→tccc

. (3.3)

Here taaa = (ta1 , . . . , tan) and similarly for tbbb and tccc.

Proof. This is a straightforward application of formula (3.2) and we leave the details to the readers.

From the stitching-in-bulk formula (3.2) I also obtain the following result.

Proposition 3.2. The order in which one performs the stitching operations does not matter. More precisely,
suppose that we have a sequence of stitching operations

maaa,bbb
eee = ma1,b1

e1 �ma2,b2
e2 � · · · �man,bn

en .

Then permuting the stitching operations does not change the result.

Proof. From formula (3.2) we see that switching two stitching operations amounts to switching the

corresponding labels in bbb and aaa, which in turn will switch the corresponding columns of γ and ε and the

corresponding rows of γ and φ. The matrix Ξ stays unchanged. Therefore

Ξ + φ(I − γ)−1ε

will be invariant. For the scalar part, since we switch the rows and columns of γ of the same indices,

we preserve I and the determinant is unchanged. (One can make the argument more precise using

permutation matrices.)

Corollary 3.2 ([BNS13, BN15a]). Γ-calculus satisfies meta-associativity.

Proof. Let me illustrate Proposition 3.2 in the concrete case of meta-associativity. Suppose that

ζ =


ω 1 2 3 S

1 α11 α12 α13 θ1

2 α21 α22 α23 θ2

3 α31 α32 α33 θ3

S φ1 φ2 φ3 Ξ

 .
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To stitch strand 1 to strand 2 and strand 2 to strand 3 we rewrite ζ as
ω 1 2 3 S

2 α21 α22 α23 θ2

3 α31 α32 α33 θ3

1 α11 α12 α13 θ1

S φ1 φ2 φ3 Ξ

 .

Then ζ �m1,2
1 �m1,3

1 is given by
ω det

(
1− α21 −α22

−α31 1− α32

)
1 S

1
(
α13 θ1

φ3 Ξ

)
+

(
α11 α12

φ1 φ2

)(
1− α21 −α22

−α31 1− α32

)−1(
α23 θ2

α33 θ3

)
S


t2,t3→t1

.

Similarly ζ �m2,3
2 �m1,2

1 is given by
ω det

(
1− α32 −α31

−α22 1− α21

)
1 S

1
(
α13 θ1

φ3 Ξ

)
+

(
α12 α11

φ2 φ1

)(
1− α32 −α31

−α22 1− α21

)−1(
α33 θ3

α23 θ2

)
S


t2,t3→t1

.

Observe that (
α12 α11

φ2 φ1

)(
1− α32 −α31

−α22 1− α21

)−1(
α33 θ3

α23 θ2

)

=

(
α11 α12

φ1 φ2

)(
0 1

1 0

)(
1− α32 −α31

−α22 1− α21

)−1(
0 1

1 0

)(
α23 θ2

α33 θ3

)

=

(
α11 α12

φ1 φ2

)(
1− α21 −α22

−α31 1− α32

)−1(
α23 θ2

α33 θ3

)
.

Thus it follows that

ζ �m1,2
1 �m1,3

1 = ζ �m2,3
2 �m1,2

1 .

This establishes the meta-associative property.

The other axioms of a meta-monoid are straightforward to verify. Thus Γ is indeed a meta-monoid.

The meta-monoid Γ is called the Gassner Calculus or Γ-Calculus, for reasons which will be clear below

(Proposition 3.7).

Our interpretation of stitching implicitly uses a relationship between the meta-monoids W of w-

tangles and Γ-calculus. From Proposition 2.1 in order to define a meta-monoid homomorphism ϕ :

W → Γ we only need to specify the images of the crossings in Γ-calculus and verify the relations R2, R3

and OC.

Proposition 3.3 ([BNS13, Hal16]). There is a meta-monoid homomorphism ϕ from the meta-monoidW



CHAPTER 3. THE GASSNER CALCULUS Γ 22

of w-tangles to Γ-calculus given by

ϕ(R±a,b) =

 1 a b

a 1 1− t±1
a

b 0 t±a

 .

Proof. Let us check the Reidemeister R3 move and leave the other relations as exercises

In the language of meta-monoids we need to show that

ϕ(R+
1,4R

+
2,5R

−
6,3) �m1,6

1 �m2,4
2 �m3,5

3 = ϕ(R−1,5R
+
4,3R

+
6,2) �m1,6

1 �m2,4
2 �m3,5

3 .

Let us first compute the left hand side. The image of R+
1,4R

+
2,5R

−
6,3 under ϕ is



1 1 2 3 4 5 6

1 1 0 0 1− t1 0 0

2 0 1 0 0 1− t2 0

3 0 0 t−1
6 0 0 0

4 0 0 0 t1 0 0

5 0 0 0 0 t2 0

6 0 0 1− t−1
6 0 0 1


.

To perform all the stitching operations at once we rearrange the rows and columns as follows.

1 1 2 3 4 5 6

6 0 0 1− t−1
6 0 0 1

4 0 0 0 t1 0 0

5 0 0 0 0 t2 0

1 1 0 0 1− t1 0 0

2 0 1 0 0 1− t2 0

3 0 0 t−1
6 0 0 0


.

Then according to formula (3.2), the left hand side is given by
1 4 5 6

1 1− t1 t2 − t2
t6

1

2 t1 1− t2 0

3 0 t2
t6

0

 .
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According to the relabeling we relabel 4→ 2, 5→ 3, 6→ 1 and t4 → t2, t5 → t3, t6 → t1 to obtain
1 2 3 1

1 1− t1 t2 − t2
t1

1

2 t1 1− t2 0

3 0 t2
t1

0

 .

Finally we rearrange the columns 
1 1 2 3

1 1 1− t1 t2 − t2
t1

2 0 t1 1− t2
3 0 0 t2

t1

 .

We leave it as an exercise to show that the right hand side also yields the same result.

Mathematica R©. One advantage of Γ-calculus is its easy implementation on a computer. Our implemen-

tation is done through Mathematica. A reader with Mathematica can just get the entire notebook from

http://www.math.toronto.edu/vohuan/ and run it directly. The version of Γ-calculus that we present is a

slightly modified form of the original program, which can be found http://drorbn.net/AcademicPensieve/2015-

07/PolyPoly/nb/Demo.pdf. Let us briefly go through the program. First we write a container that will

display Γ-calculus in a nice format. This is mostly for aesthetic purpose.

ΓCollect[Γ[ω_, λ_]] := Γ[Simplify[ω],

Collect[λ, x_, Collect[#, y_, Factor] &]];

Format[Γ[ω_, λ_]] := Module{S, M},

S = Union@CasesΓ[ω, λ], (x y)a_ ⧴ a, ∞;

M = Outer[Factor[∂x#1y#2 λ] &, S, S];

M = Prepend[M, y# & /@ S] // Transpose;

M = Prepend[M, Prepend[x# & /@ S, ω]];

M // MatrixForm;

The container Γ takes as input a rational function ω and a matrix λ. Here λ is given as a bilinear form

λ = ytaaaMxaaa =
∑
i,j∈aaa

mijyixj .

where the vector aaa is the labels of the strands and M = (mi,j)i,j∈aaa. Note that here we use y to label the

rows and x to label the columns. So for instance, the following input

Γω, {ya, yb}.
g11 g12
g21 g22

.{xa, xb}

produces

ω xa xb
ya g11 g12
yb g21 g22

Now we include the main bulk of the program, which is the subroutine that executes stitching together

with the definitions of the crossings.

http://www.math.toronto.edu/vohuan/
http://drorbn.net/AcademicPensieve/2015-07/PolyPoly/nb/Demo.pdf
http://drorbn.net/AcademicPensieve/2015-07/PolyPoly/nb/Demo.pdf
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Γ /: Γ[ω1_, λ1_] Γ[ω2_, λ2_] := Γ[ω1 *ω2, λ1 + λ2];

ma_,e_→c_[Γ[ω_, λ_]] := Module{α, β, γ, δ, θ, ϵ, ϕ, ψ, Ξ, μ},

α β θ

γ δ ϵ

ϕ ψ Ξ

=

∂ya,xa λ ∂ya,xe λ ∂ya λ

∂ye,xa λ ∂ye,xe λ ∂ye λ

∂xa λ ∂xe λ λ

/. (y x)a e → 0;

Γ(μ = 1 - γ) ω, {yc, 1}. β + α δ/μ θ + α ϵ/μ

ψ + δ ϕ/μ Ξ + ϕ ϵ/μ
.{xc, 1}

/. {ta → tc, te → tc} // ΓCollect;

Ra_,e_
+ := Γ1, {ya, ye}.

1 1 - ta
0 ta

.{xa, xe};

Ra_,e_
- := Ra,e

+ /. ta → 1/ta;

Let us check the meta-associativity condition. Meta-associativity involves three strands in a tangle, so

we input a matrix with a 3× 3 minor singled out together with the meta-associativity equation

ζ = Γω, {y1, y2, y3, yS}.

α11 α12 α13 θ1
α21 α22 α23 θ2
α31 α32 α33 θ3
ϕ1 ϕ2 ϕ3 Ξ

.{x1, x2, x3, xS}

(ζ // m1,2→1 // m1,3→1) ⩵ (ζ // m2,3→2 // m1,2→1)

The output is

ω x1 x2 x3 xS
y1 α11 α12 α13 θ1
y2 α21 α22 α23 θ2
y3 α31 α32 α33 θ3

yS ϕ1 ϕ2 ϕ3 Ξ

True

as expected. Next we check the Reidemeister III relation. Its left hand side is

R1,4
+ R2,5

+ R6,3
- // m1,6→1 // m2,4→2 // m3,5→3

and the output is

1 x1 x2 x3

y1 1 1 - t1
-1+t1 t2

t1

y2 0 t1 1 - t2
y3 0 0 t2

t1

Its right hand side is

R1,4
- R5,2

+ R6,3
+ // m1,5→1 // m2,6→2 // m3,4→3

and the output is

1 x1 x2 x3

y1 1 1 - t1
-1+t1 t2

t1

y2 0 t1 1 - t2
y3 0 0 t2

t1
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as expected. For the Reidemeister II move we look at

Ri,j
+ Rk,l

- // mi,k→i // mj,l→j

which yields

1 xi xj
yi 1 0
yj 0 1

as required. For the OC relation we want to verify

R4,2
+ R1,3

+ // m1,4→1 == R4,3
+ R1,2

+ // m1,4→1

Both sides yield

1 x1 x2 x3
y1 1 1 - t1 1 - t1
y2 0 t1 0
y3 0 0 t1

as expected.

Example 3.1. Consider the long w-knots L and L′ given by

In the language of meta-monoids, L has the description

L = R−1,3R
+
4,2 �m

1,2
1 �m1,3

1 �m1,4
1 .

Then its invariant in Γ-calculus is

ϕ(L) =

(
2− t−1

1 1

1 1

)
.

In the language of meta-monoids, L′ has the description

L′ = R+
1,3R

−
4,2 �m

1,2
1 �m1,3

1 �m1,4
1 .

So its invariant in Γ-calculus is

ϕ(L′) =

(
2− t1 1

1 1

)
.

Thus L and L′ are not equivalent as long w-knots and are non-trivial. (However when we close L and

L′ by joining the two endpoints we obtain the trivial (closed) knot.) ♣

Observe that Proposition 2.1 gives an inductive framework to prove properties for w-tangles. Namely,

one first check the property for the crossings, and then show that the property still holds under disjoint

union and stitching. Let me illustrate this method with an important property of w-tangles.
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Proposition 3.4 ([BN14b]). Let T be a w-tangle whose components are labeled by the set X and

ϕ(T ) =

(
ω X

X M

)
.

Then the sum of the entries in each column of M is 1.

Proof. The property clearly holds for crossings and is preserved under disjoint union. So we only need

to show that it is invariant under stitching:
ω a b S

a α β θ

b γ δ ε

S φ ψ Ξ

 ma,bc−−−→

 (1− γ)ω c S

c β + αδ
1−γ θ + αε

1−γ
S ψ + δφ

1−γ Ξ + φε
1−γ


ta,tb→tc

.

Assume that the property is true for the matrix on the left, i.e.
α+ γ + 〈φ〉 = 1

β + δ + 〈ψ〉 = 1

θ + ε+ 〈Ξ〉 = 111,

where 111 denotes a row vector whose each entry is 1 and 〈ccc〉 of a column vector ccc means taking the sum

of the entries. For the case of Ξ, we apply 〈〉 to each column to obtain a row vector. Then we have

β +
δα

1− γ
+ 〈ψ〉+

δ 〈φ〉
1− γ

= 1− δ +
δ(α+ 〈φ〉)

1− γ
= 1− δ +

δ(1− γ)

1− γ
= 1,

and

θ +
αε

1− γ
+ 〈Ξ〉+

〈φ〉 ε
1− γ

= 111− ε+
(α+ 〈φ〉)ε

1− γ
= 111− ε+

(1− γ)ε

1− γ
= 111,

as required.

As a corollary we have that when K is a long w-knot the matrix part is 1, so only the scalar part is

interesting, i.e.

ϕ(K) =

(
ωK 1

1 1

)
,

where we denote the scalar part by ωK .

Example 3.2. Let us look at the long trefoil K
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Its meta-monoid description is given by

R+
1,4R

+
5,2R

+
3,6 �m

1,2
1 �m1,3

1 �m1,4
1 �m1,5

1 �m1,6
1 .

The image of R+
1,4R

+
5,2R

+
3,6 under ϕ is



1 1 2 3 4 5 6

1 1 0 0 1− t1 0 0

2 0 t5 0 0 0 0

3 0 0 1 0 0 1− t3
4 0 0 0 t1 0 0

5 0 1− t5 0 0 1 0

6 0 0 0 0 0 t3


.

After we perform all the stitching operations the matrix part is 1 and the scalar part by formula (3.2) is

the determinant of the matrix I − γ, where γ is obtained by removing the first row and the last column

of the above matrix, i.e.

ωK = det


1 −t5 0 0 0

0 1 −1 0 0

0 0 1 −t1 0

0 t5 − 1 0 1 −1

0 0 0 0 1


t5→t1

= 1− t+ t2,

which one recognizes to be the Alexander polynomial of the trefoil (Proposition 3.8). ♣

As another application of the stitching-in-bulk formula (3.2), observe that a priori, the scalar ω

and the matrix entries are rational functions. However, it turns out that for a w-tangle ω is a Laurent

polynomial, as shown in the following proposition.

Proposition 3.5 ([BN14b]). Let T be a w-tangle with scalar part ω and matrix part M , then ω is a Laurent
polynomial and ωM is a matrix whose entries are Laurent polynomials.

Proof. One can obtain T starting with a collection of crossings and then stitching all these crossings at

once using formula (3.2). Observe that when we take the disjoint union of crossings, the matrix part

consists of Laurent polynomials (since each crossing is) and the scalar part is 1. Then after stitching

the scalar part becomes det(I − γ) where γ is specified by the stitching instruction. Since γ consists of

Laurent polynomials, det(I − γ) is a Laurent polynomials, thus ω is a polynomial. Now for the other

property, we look at

ω det(I − γ)(Ξ + φ(I − γ)−1ε).

All the matrices have Laurent polynomial entries, except for (I − γ)−1. Recall that (I − γ)−1 can be

computed by dividing its adjugate (which are Laurent polynomials) by det(I−γ). Therefore multiplying

with det(I − γ) removes the denominator, and so the resulting entries are Laurent polynomials.

Example 3.3. Let us compute the invariant for the tangle T given by.
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4

5

6

7

8

9
10

11 12

1

2

3

Figure 3.1: A tangle.

As a disjoint union of crossings, T is given as follows

R+
7,2R

−
10,6R

−
5,11R

−
3,12R

+
4,8R

+
9,1 � m1,4

1 � m2,5
2 � m2,6

2 � m2,7
2 � m3,8

3 � m3,9
3 � m3,10

3 � m3,11
3 � m3,12

3 .

Using Mathematica we obtain its invariant in Γ-calculus:

(
t2−1
t3

+ 1
)

(t3 − t1 (t3 − 1)) 1 2 3

1 − t3
t3t1−t1−t3

(t1−1)(t3−1)t3
(t2+t3−1)(t3t1−t1−t3) − (t1−1)(t3t2−t2−2t3+1)

(t2+t3−1)(t3t1−t1−t3)

2 0 t2
t2+t3−1

t2−1
t2+t3−1

3 t1(t3−1)
t3t1−t1−t3 − t1(t3−1)

(t2+t3−1)(t3t1−t1−t3)
t1t

2
3−t

2
3−3t1t3+t1t2t3−t2t3+2t3+t1−t1t2+t2−1

(t2+t3−1)(t3t1−t1−t3)

 .

If we multiply the matrix part with the scalar part then we get −1 + t2 + t3 −1 + t1 + t3 − t1t3 t2t1 − t2t1
t3

+ t1
t3
− 2t1 − t2 + t2

t3
− 1

t3
+ 2

0 −t1t2 + t1t2
t3

+ t2 −t2t1 + t2t1
t3
− t1

t3
+ t1 + t2 − 1

−t2t1 − t3t1 + t2t1
t3
− t1

t3
+ 2t1 t1 − t1

t3
−t2t1 − t3t1 + t2t1

t3
− t1

t3
+ 3t1 + t2 + t3 − t2

t3
+ 1

t3
− 2

 .

The fact that each entry is a Laurent polynomial suggests that it might be possible to categorify the

invariant. ♣

3.2 The Gassner Representation of String Links

In this section we restrict Γ-calculus to string links (compare with [KLW01]). Given a positive integer

n, fix n points in the interior of the 2-disk p1, . . . , pn. A string link of n components is a smooth, proper,

oriented 1-dimensional submanifold of D2 × [0, 1] homeomorphic to the disjoint union of n intervals

such that the initial point of each interval coincides with some pi × {0} and the endpoint coincides with

pj × {1}. Two string links are equivalent (or isotopic) if they are related by a sequence of R2 and R3

moves (or equivalently if there is a smooth family of string links interpolating between the two. We did

not impose the Reidemeister move R1 because technically we are working with framed string links.) In

our setting the string links are labeled, i.e. each component is labeled with an element from some set of

labels X. An example of a string link is as follows.
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In the figure the orientation is such that the components run from the bottom to the top of the diagram.

Given a labeled string link β, the labels of the components yield a labeling of the bottom endpoints

and top endpoints. Suppose that the bottom endpoints of β are labeled by a1, a2, . . . , an and the top

endpoints of β are labeled by b1, b2, . . . , bn (where we read the endpoints from left to right). The labeling

of the endpoints yields a permutation ρ given by

ai � ρ = bi, 1 ≤ i ≤ n.

Note that here permutations act on the right. We call ρ the permutation induced by β. To simplify

notation, for a vector aaa = (a1, . . . , an) we denote

aaaρ := aaa � ρ = (a1ρ, a2ρ, . . . , anρ) = (b1, b2, . . . , bn).

For instance in the above figure the string link induces the permutation (1 7→ 3, 2 7→ 1, 3 7→ 2) (this is

because the labels on the top are 3, 1, 2).

Correspondingly, if ϕ(β) is the image of β in Γ-calculus, we can rearrange the columns and rows of

the matrix part of ϕ(β) as follows

ϕ(β) =


ω a1 · · · an

a1

... M
an


permute the columns−−−−−−−−−−−−→

according to ρ


ω a1ρ · · · anρ

a1

... Mρ

an

 . (3.4)

In other words column j of Mρ is column ajρ of M .

Let β1 and β2 be string links with n components. There is a composition or multiplication of string

links (β1, β2) 7→ β1 · β2 obtained by stacking β2 on top of β1. Note that we also identify the labels of the

top endpoints of β1 and the labels of the bottom endpoints of β2. So for instance in the following
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we identify the label 4 with 1, 5 with 3, and 6 with 2. In terms of meta-monoids, the composition β1 · β2

can be described by the sequence of stitching

(β1β2) �m1,4
1 �m3,5

3 �m2,6
2 .

Let us find out the permutation induced by β1 · β2. Suppose that the bottom endpoints of β1 are

labeled by aaa = (a1, . . . , an) and the bottom endpoints of β2 are labeled by bbb = (b1, . . . , bn), where ai 6= bj

for 1 ≤ i, j ≤ n. If ρ1 is the permutation induced by β1 and ρ2 is the permutation induced by β2, then

the top endpoints of β1 are labeled by aaaρ1 = (a1ρ1, . . . , anρ1), and the top endpoints of β2 are labeled

by bbbρ2 = (b1ρ2, . . . , bnρ2). In the composition β1 · β2 we relabel bi to aiρ1. Therefore the labels of the

top endpoints of β1 ·β2 is a1ρ1ρ2, . . . , anρ1ρ2. In other words, the permutation induced by β1 ·β2 is ρ1ρ2,

where recall that in our notations ρ1ρ2 = ρ1 � ρ2.

Assume that the images of β1 and β2 in Γ-calculus are given by

ϕ(β1) =

(
ω1 aaa

aaa M1

)
and ϕ(β2) =

(
ω2 bbb

bbb M2

)
,

then I have the following result.

Proposition 3.6. In Γ-calculus, the composition β1 · β2 is given by(
ω1ω2 aaaρ1ρ2

aaa Mρ1
1 Mρ2

2

)
tbbb→taaaρ1

.

Proof. In the stitching language, the composition β1 · β2 is obtained by stitching the strands aiρ1 to the

strands bi. By formula (3.2) we obtain ω1ω2 aaaρ1 bbbρ2

bbb 000 Mρ2
2

aaa Mρ1
1 000

 m
aaaρ1,bbb
aaaρ1−−−−→

(
ω1ω2 bbbρ2

aaa Mρ1
1 Mρ2

2

)
.

Then identifying the labels bi with the labels aiρ1 we obtain(
ω1ω2 aaaρ1ρ2

aaa Mρ1
1 Mρ2

2

)
tbbb→aaaρ1

,

as required.
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Now let us explain where the name Gassner calculus comes from. When β is a labeled braid, recall

that its Gassner representation (see [BN14a]) is given by

R+
a,b 7→

(
1− ta 1

ta 0

)
, R−a,b 7→

(
0 t−1

a

1 1− t−1
a

)

and extends by the identity matrix. For instance the following braid

has the Gassner representation1− t1 1 0

t1 0 0

0 0 1


1 0 0

0 0 t−1
3

0 1 1− t−1
3

 =

1− t1 0 t−1
3

t1 0 0

0 1 1− t−1
3

 ,

as required. Now I can show that Γ-calculus recovers the Gassner representation.

Proposition 3.7. Let β be a labeled braid with n components and induced permutation ρ. Suppose that

ϕ(β) =


ω a1 · · · an

a1

... M
an

 ,

then ω = 1 and Mρ is the Gassner representation of β.

Proof. We first look at the standard generators of the braid groups σ±1
i , 1 ≤ i ≤ n − 1. Notice that the

permutation induced by each generator is a transposition. Ignoring the identity part, we have

ϕ(R+
a,b) =

 1 a b

a 1 1− ta
b 0 ta

 permute the columns−−−−−−−−−−−−−−−−→
according to the permutation

 1 b a

a 1− ta 1

b ta 0

 ,

and

ϕ(R−a,b) =

 1 b a

b t−1
a 0

a 1− t−1
a 1

 permute the columns−−−−−−−−−−−−−−−−→
according to the permutation

 1 a b

b 0 t−1
a

a 1 1− t−1
a

 .

We see that the right hand sides are exactly the Gassner representation. From Proposition 3.6, composi-

tions of braids correspond to products of matrices. Thus Mρ agrees with the Gassner representation of

β. Furthermore, since the scalar part of each generator is 1, the scalar part of β is still 1.
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3.3 The Alexander Polynomial

In this section I relate Γ-calculus and the Alexander polynomial. Given a long (usual) knot K, let K̃ be

the knot obtained by connecting the endpoints of K in a trivial manner. For two long knots K1 and K2,

it is known that if K̃1 and K̃2 are equivalent, then K1 and K2 are equivalent (see [JF13]). Then I have

the following result.

Proposition 3.8. Let K be a long knot and suppose that

ϕ(K) =

(
ω 1

1 1

)
.

Then ω .
= ∆K̃(t). Here ∆K̃(t) is the Alexander polynomial (see [MK99]) of K̃, where K̃ is the closed knot

obtained by closing the open component of K trivially and .
= means equality up to multiplication by ±tn,

n ∈ Z.

Proof. By Alexander’s Theorem (see [KT08]) K̃ is the closure of a braid β. Then the Alexander polyno-

mial of K̃ (see [MK99]) is given by

∆K̃(t)
.
= det([I − f(β)]11).

Here f(β) denotes the Burau representation of β, i.e. the Gassner representation when we set all the

variables to t and [A]ji denotes the matrix obtained from A by removing the ith row and the jth column.

From Proposition 3.7 we know that f(β) agrees with (a permutation of) the matrix part of ϕ(β). Now

if we take the closure of β by connecting the kth top endpoint to the kth bottom endpoint in a trivial

manner, except when k = 1, then we obtain a long knot K1. Proposition 6.1 says that the scalar part of

K1 is

det([I − f(β)]11).

To finish off, we observe that K1 is equivalent to K because they both close to the same knot K. There-

fore the scalar parts of K1 and K must agree. In other words,

ω
.
= ∆K̃(t),

as required.

Thus we see that Γ-calculus gives us an extension of the Alexander polynomial to w-tangles, which

include usual tangles. In the case of one component, we obtain an invariant of long w-knots, which

contains the Alexander polynomials of usual knots. We can compute the Alexander polynomial by taking

the closure of a tangle (not necessarily a braid). For instance, consider the long knot 77 in the Knot Atlas.

In the following figure we cut the knot 77 at three different points to obtain the tangle inside the dashed

circle. The tangle has three components labeled by 1, 2, 3. To recover the knot we perform two stitching

operations and leave component 3 open in order to get a long knot.

http://katlas.org/wiki/7_7
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In terms of meta-monoids the tangle is given by

R+
1,2R

+
14,4R

−
5,13R

−
3,6R

−
12,9R

+
7,11R

+
10,8�m

1,4
1 �m2,5

2 �m2,6
2 �m2,7

2 �m2,8
2 �m3,9

3 �m3,10
3 �m3,11

3 �m3,12
3 �m3,13

3 �m3,14
3 .

Suppose that its invariant in Γ-calculus has the form
ω 1 2 3

1 α11 α12 α13

2 α21 α22 α23

3 α31 α32 α33

 .

Then by stitching strand 2 to strand 1 and strand 3 to strand 2 the invariant of the long knot is given by

ω det

(
I −

(
α12 α13

α22 α23

))∣∣∣∣∣
t2,t3→t

.

Doing the calculation one obtain

t−2 − 5t−1 + 9− 5t+ t2,

which one can check to be the Alexander polynomial of the knot.

3.4 Orientation Reversal

For subsequent sections, it is useful to have a formula to reverse the orientation of a strand of a w-tangle

in Γ-calculus.

We denote the operation of reversing the orientation of strand a of a w-tangle by Ha. To proceed, let us
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introduce another meta-monoid σ, called σ-calculus, defined as follows. For a finite set X, let σX be the

set
{∑

x∈X sxvvvx
}

, where sx is a monomial in the variables tz, z ∈ X and {vvvx : x ∈ X} is a (formal)

linearly independent set of vectors. Let us record the operations below:

• identity
(∑

x∈X sxvvvx
)
� ea =

(∑
x∈X sxvvvx

)
+ vvva, where a 6∈ X,

• disjoint union
(∑

x∈X sxvvvx
)
t
(∑

y∈Y syvvvy

)
=
∑
z∈X∪Y szvvvz, where X ∩ Y = ∅,

• deletion
(∑

x∈X sxvvvx + savvva
)
� ηa =

∑
x∈X(sx)ta→1vvvx, where a 6∈ X,

• renaming
(∑

x∈X sxvvvx + savvva
)
� σab =

∑
x∈X(sx)ta→tbvvvx + (sa)ta→tbvvvb, where {a, b} ∩X = ∅,

• stitching
(
savvva + sbvvvb +

∑
x∈S sxvvvx

)
�ma,b

c =
∑
x∈S(sx)ta,tb→tcvvvx + (sasb)ta,tb→tcvvvc.

It can be verified that these operations satisfy the meta-monoid axioms. There is a meta-monoid homo-

morphism from w-tangles to σ-calculus, which we also denote by ϕ, given by

R±a,b 7→ vvva + t±1
a vvvb.

One checks readily that the Reidemeister relations are satisfied. So we obtain a w-tangle invariant. Given

a w-tangle, one sees that sa of the strand labeled a is given by∏
t±1
b ,

where the product is over all crossings such that a is the understrand and b is the overstrand (including

a itself) and ±1 is the sign of the crossing. For example, the tangle given in Figure 3.1 has value

σ = t3vvv1 + t2t
−1
3 vvv2 + t1t

−1
2 t−1

3 vvv3.

To describe the operation Ha properly we need to extend Γ-calculus. Let Γ̃ be the meta-monoid given

as follows. For a finite set X of labels,

Γ̃X = (ΓX , σX).

We call Γ̃ extended Γ-calculus. From the above discussion there is a meta-monoid homomorphism ϕ :

W → Γ̃ defined componentwise.

Mathematica R©. Let us briefly discuss how we can implement Γ̃-calculus in Mathematica. A reader

with Mathematica can get the notebook from http://www.math.toronto.edu/vohuan/. This will be very

similar to the Γ-calculus program. First we write a subroutine to display Γ̃ in a nice format

eΓCollect[eΓ[ω_, λ_, σ_]] := eΓ[Simplify[ω],

Collect[λ, x_, Collect[#, y_, Factor] &], σ];

Format[eΓ[ω_, λ_, σ_]] := Module{S, M},

S = Union@CaseseΓ[ω, λ, σ], (x y)a_ ⧴ a, ∞;

M = Outer[Factor[∂x#1y#2 λ] &, S, S];

M = Prepend[M, y# & /@ S] // Transpose;

M = Prepend[M, Prepend[x# & /@ S, ω]];

{M // MatrixForm, σ};

eΓ[ω1_, λ1_, σ1_] ≡ eΓ[ω2_, λ2_, σ2_] :=

Simplify[PowerExpand[ω1 ⩵ ω2  λ1 ⩵ λ2  σ1 ⩵ σ2 ]];

http://www.math.toronto.edu/vohuan/
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Here we call the container eΓ to distinguish it from the Γ container. It will take as input a scalar ω, a

labeled matrix λ and a σ element, for instance

In[21]:= eΓ1, {ya, ye}.
1 1 - ta
0 ta

.{xa, xe}, {sa, se}.{va, ve}

and returns

Out[21]= 

1 xa xe
ya 1 1 - ta
ye 0 ta

, sa va + se ve

Notice also that we use ≡ to compare two elements in eΓ. Then we include the stitching subroutine

together with the definitions of the crossings

eΓ /: eΓ[ω1_, λ1_, σ1_] eΓ[ω2_, λ2_, σ2_] := eΓ[ω1 *ω2, λ1 + λ2, σ1 + σ2];

ema_,e_→c_[eΓ[ω_, λ_, σ_]] := Module{α, β, γ, δ, θ, ϵ, ϕ, ψ, Ξ, μ},

α β θ

γ δ ϵ

ϕ ψ Ξ

=

∂ya,xa λ ∂ya,xe λ ∂ya λ

∂ye,xa λ ∂ye,xe λ ∂ye λ

∂xa λ ∂xe λ λ

/. (y x)a e → 0;

eΓ(μ = 1 - γ) ω, {yc, 1}. β + α δ/μ θ + α ϵ/μ

ψ + δ ϕ/μ Ξ + ϕ ϵ/μ
.{xc, 1},

(σ /. va e → 0) + vc (∂va σ) (∂ve σ)

/. {ta → tc, te → tc, ba → bc, be → bc} // eΓCollect;

eRa_,e_
+ := eΓ1, {ya, ye}.

1 1 - ta
0 ta

.{xa, xe}, va + ta ve;

eRa_,e_
- := eRa,e

+ /. ta → ta
-1;

Note that here we denote the stitching operation by ema,e→c and the crossings by eR±a,e to distinguish

them from the ones in Γ-calculus.

Proposition 3.9 ([BN14b]). We have the following commutative diagram

W{a}∪S W{a}∪S

Γ̃{a}∪S Γ̃{a}∪S

ϕ

Ha

ϕ

dHa

where the operation dHa is described as follows. For an element of Γ̃{a}∪S given by


 ω a S

a α θ

S φ Ξ

 , savvva +
∑
x∈S

sxvvvx

 ,

its image under dHa is
 αω/sa a S

a 1/α θ/α

S −φ/α (αΞ− φθ)/α

 , s−1
a vvva +

∑
x∈S

sxvvvx


ta→t−1

a

.

Mathematica R©. Before presenting the proof let us describe our implementation of dHa in Mathematica



CHAPTER 3. THE GASSNER CALCULUS Γ 36

dH[a_][eΓ[ω_, λ_, σ_]] := Module{α, θ, ϕ, Ξ, sa},


α θ

ϕ Ξ
 =

∂ya,xa λ ∂ya λ

∂xa λ λ
/. (y x)a → 0;

sa = ∂va σ;

eΓα ω/sa, {ya, 1}. 1/α θ/α

-ϕ/α (α Ξ - ϕ θ)/α
.{xa, 1},

va
sa

+ (σ /. {va → 0}) /. {ta ⧴ 1/ta, ba ⧴ -ba} // eΓCollect;

The subroutine dH[a] reverses the orientation of strand a in Γ̃-calculus.

Proof. We want to show that

Ha � ϕ = ϕ � dHa. (3.5)

The meta-monoid structure allows us to use an “inductive” proof as follows. Given a w-tangle T , to

reverse the orientation of strand a, we first decompose T into a disjoint union of crossings, reverse the

orientations of the crossings that contain a part of strand a, and then stitch them together. For the base

step, we need to check the crossings:

R±1,2 � ϕ � dH
1 = R±1,2 �H

1 � ϕ = R∓1,2 � ϕ, (3.6)

R±1,2 � ϕ � dH
2 = R±1,2 �H

2 � ϕ = R∓1,2 � ϕ, (3.7)

where recall that here the image lies in Γ̃-calculus

R±1,2 � ϕ =


 1 1 2

1 1 1− t±1
1

2 0 t±1
1

 , vvv1 + t±1
1 vvv2

 .

For the “induction” step the relevant equation to check is

ϕ �mb,c
a � dHa = ϕ � dHb � dHc �mc,b

a . (3.8)

We can visualize the above equation as follows

To see why equation (3.8) implies equation (3.5), suppose that strand a is obtained by stitching strand b

to strand c. Then to reverse the orientation of strand a we can reverse the orientations of strands b and

c and then stitch them, i.e. Ha � ϕ is given by

Hb �Hc �mc,b
a � ϕ = Hb �Hc � ϕ �mc,b

a
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where we can commute ϕ and mc,b
a because ϕ is a meta-monoid homomorphism. From the “induction

hypothesis” suppose that we already have

Hb � ϕ = ϕ � dHb, Hc � ϕ = ϕ � dHc.

Then

Ha � ϕ = Hb �Hc � ϕ �mc,b
a = Hb � ϕ � dHc �mc,b

a = ϕ � dHb � dHc �mc,b
a = ϕ �mb,c

a � dHa

= mb,c
a � ϕ � dHa = ϕ � dHa,

as required. Now equations (3.6), (3.7) and (3.8) are simple enough that we can just check them by

hand. However it is much faster to use Mathematica. For equations (3.6) and (3.7) the commands are

(eR1,2
+ // dH[1]) ≡ (eR1,2

- )

(eR1,2
+ // dH[2]) ≡ (eR1,2

- )

(eR1,2
- // dH[1]) ≡ (eR1,2

+ )

(eR1,2
- // dH[1]) ≡ (eR1,2

+ )

For equation (3.8) we define an arbitrary element ζ and apply both sides to ζ. The command is

ζ = eΓω, {yb, yc, yS}.
α β θ

γ δ ϵ

ϕ ψ Ξ

.{xb, xc, xS}, sb vb + sc vc + sS vS

(ζ // emb,c→a // dH[a]) ≡ (ζ // dH[b] // dH[c] // emc,b→a)

When one runs these commands, they all return True, and that completes the proof.

Again it is useful to have a formula to reverse the orientations of many strands at the same time. I

will record and prove it in the next proposition.

Proposition 3.10. Let T be a w-tangle and aaa = (a1, . . . , an) is a vector where ai 6= aj for 1 ≤ i, j ≤ n.
Suppose that the image of T in Γ̃-calculus is

T � ϕ =


 ω aaa S

aaa α θ

S φ Ξ

 ,

n∑
i=1

saivvvai +
∑
x∈S

sxvvvx

 .

Let dHaaa denote the composition dHa1 � · · · � dHan then ϕ � dHaaa is given by


ω det(α)∏n
i=1 sai

aaa S

aaa α−1 α−1θ

S −φα−1 Ξ− φα−1θ

 ,

n∑
i=1

s−1
ai vvvai +

∑
x∈S

sxvvvx


taaa→t−1

aaa

,

where taaa → t−1
aaa denotes the sequence of substitution tai → t−1

ai for 1 ≤ i ≤ n.

Proof. We proceed by induction on n. The case when n = 1 is precisely dSa. Now for the induction step,
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we write aaa = (aaa′, an) and

ϕ(T ) =




ω aaa′ an S

aaa′ α1 α2 θ1

an α3 α4 θ2

S φ1 φ2 Ξ

 ,

n−1∑
i=1

saivvvai + sanvvvan +
∑
x∈S

sxvvvx

 .

Then reversing the orientation of strands aaa′, using the induction hypothesis, we obtain


ω det(α1)∏n−1
i=1 sai

aaa′ an S

aaa′ α−1
1 α−1

1 α2 α−1
1 θ1

an −α3α
−1
1 α4 − α3α

−1
1 α2 θ2 − α3α

−1
1 θ1

S −φ1α
−1
1 φ2 − φ1α

−1
1 α2 Ξ− φ1α

−1
1 θ1

 ,

n−1∑
i=1

s−1
ai vvvai + sanvvvan +

∑
x∈S

sxvvvx


taaa′→t

−1

aaa′

.

Now we reverse the orientation of strand an to get
ω̃ an aaa′ S

an
1

α4−α3α
−1
1 α2

− α3α
−1
1

α4−α3α
−1
1 α2

θ2−α3α
−1
1 θ1

α4−α3α
−1
1 α2

aaa′ − α−1
1 α2

α4−α3α
−1
1 α2

α−1
1 +

α−1
1 α2α3α

−1
1

α4−α3α
−1
1 α2

α−1
1 θ1 − α−1

1 α2(θ2−α3α
−1
1 θ1)

α4−α3α
−1
1 α2

S
−φ2+φ1α

−1
1 α2

α4−α3α
−1
1 α2

−φ1α
−1
1 +

(φ2−φ1α
−1
1 α2)α3α1

α4−α3α
−1
1 α2

Ξ− φ1α
−1
1 θ1 − (φ2−α−1

1 α2φ1)(θ2−α3α
−1
1 θ1)

α4−α3α
−1
1 α2


taaa→t−1

aaa

,

where

ω̃ =
ω(α4 − α3α

−1
1 α2) det(α1)∏n
i=1 sai

∣∣∣∣
taaa→t−1

aaa

,

and the σ-part is given by
n∑
i=1

(s−1
ai )taaa→t−1

aaa
vvvai +

∑
x∈S

(sx)taaa→t−1
aaa
vvvx

Again by Lemma 3.2 we have

det

(
α1 α2

α3 α4

)
= det

(
α4 α3

α2 α1

)
= det(α4 − α3α

−1
1 α2) det(α1).

To finish off, we just need to show that

(
α1 α2

α3 α4

)−1

=

α−1
1 +

α−1
1 α2α3α

−1
1

α4−α3α
−1
1 α2

− α−1
1 α2

α4−α3α
−1
1 α2

− α3α
−1
1

α4−α3α
−1
1 α2

1
α4−α3α

−1
1 α2

 ,

which one can easily check by performing matrix multiplications and we leave the details to the readers.

3.5 Strand Doubling

This section is not essential to the rest of the thesis so a reader can skip it on first reading. For conve-

nience let us also describe the operation of doubling or unzipping a strand of a w-tangle, which is the
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operation of replacing a strand by two parallel copies of itself.

More concretely we denote the operation of doubling a strand labeled i to two strands labeled j and k

by ∆i
j,k. So if X is a set of labels and X = {i} ∪ S, where {i, j, k} ∩ S = ∅, then

∆i
j,k :W{i}∪S →W{j,k}∪S .

We would like to investigate the effect of strand doubling on the image of a w-tangle in Γ̃-calculus. Our

framework will be similar to the case of orientation reversal.

Proposition 3.11 ([BN14b]). We have the following commutative diagram

W{i}∪S W{j,k}∪S

Γ̃{i}∪S Γ̃{j,k}∪S

ϕ

∆i
j,k

ϕ

q∆i
j,k

where the operation q∆i
j,k is described as follows. For an element of Γ̃{i}∪S given by


 ω i S

i α θ

S φ Ξ

 , sivvvi +
∑
x∈S

sxvvvx

 ,

its image under q∆i
j,k is


ω j k S

j
−α+tjtksi+tjν

µ
(−1+tj)ν

µ
(−1+tj)θ

µ

k
tj(−1+tk)ν

µ
−si+tjtkα−tjν

µ
tj(−1+tk)θ

µ

S φ φ Ξ

 , si(vvvj + vvvk) +
∑
x∈S

sxvvvx


ti→tjtk

,

where µ = −1 + ti and ν = α− si.

Mathematica R©. Again before proving the proposition let us present our implementation of q∆i
j,k in

Mathematica:
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qΔ[i_, j_, k_][eΓ[ω_, λ_, σ_]] := Module

{α, θ, ϕ, Ξ, si, M, ti, μ, ν},


α θ

ϕ Ξ
 =

∂yi,xi λ ∂yi λ

∂xi λ λ
/. (y x)i → 0 /. ti → ti;

si = ∂vi σ /. ti → ti; μ = -1 + ti; ν = α - si;

M =

-α+ti si+tj ν

μ

-1+tj ν

μ

-1+tj θ

μ

tj (-1+tk) ν

μ

-si+ti α-tj ν

μ

tj (-1+tk) θ

μ

ϕ ϕ Ξ

;

eΓ[ω /. {ti → tj tk}, {yj, yk, 1}.M.{xj, xk, 1} /. {ti → tj tk},

(σ /. {vi → 0}) + (vj + vk) si /. ti ti → tj tk] // eΓCollect

;

The subroutine q∆[i, j, k] doubles strand i to strands j and k.

Proof. Our strategy will be to use an “induction” procedure analogous to the proof of orientation reversal.

Given a w-tangle T , to double strand i, we first decompose T into a disjoint union of crossings, double

the relevant strands, and then stitch them together. For the base case we have to check the following

equations

R+
1,3 � ϕ � q∆

1
1,2 = R+

1,3 �∆1
1,2 � ϕ = R+

2,3R
+
1,4 �m

3,4
3 � ϕ = R+

2,3R
+
1,4 � ϕ �m

3,4
3 ,

R−1,3 � ϕ � q∆
1
1,2 = R−1,3 �∆1

1,2 � ϕ = R−1,3R
−
2,4 �m

3,4
3 � ϕ = R−1,3R

−
2,4 � ϕ �m

3,4
3 ,

R+
1,2 � ϕ � q∆

2
2,3 = R+

1,2 �∆2
2,3 � ϕ = R+

1,2R
+
4,3 �m

1,4
1 � ϕ = R+

1,2R
+
4,3 � ϕ �m

1,4
1 ,

R−1,2 � ϕ � q∆
2
2,3 = R−1,2 �∆2

2,3 � ϕ = R−1,3R
−
4,2 �m

1,4
1 � ϕ = R−1,3R

−
4,2 � ϕ �m

1,4
1 .

These equations are simple enough to be checked by hand, but it is more convenient to use Mathematica.

The commands are

qΔ[1, 1, 2][eR1,3
+ ] ≡ (eR2,3

+ eR1,4
+ // em3,4→3)

qΔ[1, 1, 2][eR1,3
- ] ≡ (eR1,3

- eR2,4
- // em3,4→3)

qΔ[2, 2, 3][eR1,2
+ ] ≡ (eR1,2

+ eR4,3
+ // em1,4→1)

qΔ[2, 2, 3][eR1,2
- ] ≡ (eR1,3

- eR4,2
- // em1,4→1)

They all return True. For the “induction” step the equation we need to verify is

ϕ � q∆i
i1,i2 � q∆

j
j1,j2

�mi1,j1
k1

�mi2,j2
k2

= ϕ �mi,j
k � q∆k

k1,k2 . (3.9)

We can visualize the above equation as follows
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Finally we can verify equation (3.9) in Mathematica by applying both sides to an element ζ as follows

ζ = eΓω, {yi, yj, yS}.
α β θ

γ δ ϵ

ϕ ψ Ξ

.{xi, xj, xS}, si vi + sj vj + sS vS

(ζ // qΔ[i, i1, i2] // qΔ[j, j1, j2] // emi1,j1→k1 // emi2,j2→k2) ≡

(ζ // emi,j→k // qΔ[k, k1, k2])

The command returns True and that completes the proof.



Chapter 4

Expansions of w-Tangles

In this chapter and chapter 5 we explain the algebraic framework that gives rise to Γ-calculus. The

chapters are mainly expository and are independent of other chapters so a reader mainly interested in

applications of Γ-calculus to ribbon knots can go directly to chapter 6 without losing any understanding.

The materials here are taken from [BND14, BN16b].

4.1 Algebraic Structures and Expansions

Let us give the definition of an algebraic structure as introduced in [BND14] (see also [Lei04]). Let C

be a set whose each element is called a kind. An algebraic structure indexed by C, denoted by A, is a

collection {Aα} of sets Aα, one for each kind α ∈ C, along with a collection of set maps, which we also

call operations. Each operation is of the form

ψα1,...,αk
α0

: Aα1 × · · · × Aαk → Aα0 , α1, . . . , αk, α0 ∈ C.

Here k is a non-negative integer and × is the usual set product. The operations are called unary if k = 1,

binary if k = 2, or multinary if k ≥ 2. For convenience we also allow the case k = 0, which we call a

0-ary operation. A 0-ary operation on Aα specifies a named “constant” in the set Aα.

The operations may or may not be subject to axioms–an axiom is an identity asserting that some

composition of operations is equal to some other composition of operations. One can think of an alge-

braic structure A schematically as in the figure, where each oval denotes a set of a certain kind, and the

arrows denote the operations (typically each arrow has multiple inputs, but only one output).

42
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In the figure the algebraic structure A has five kinds of objects C = {1, 2, 3, 4, 5}, five unary operations,

two binary operations, and two 0-nary operations (the named constants 1 in A1 and 0 in A5) . Examples

of algebraic structures abound in mathematics (see [BND14]). For our purpose, we focus on two main

examples: monoids and meta-monoids.

Example 4.1 (Monoids). Let G be a monoid with identity e. Then as an algebraic structure G has one

kind of object (C = {1}), one binary operation: multiplication, which we denote by m, and one 0-nary

operation: the identity, which we denote by e.

The operations satisfy the following axioms:

(m× Id) �m = (Id×m) �m,

(Id× e) �m = (e× Id) �m = Id.

The first axiom corresponds to associativity and the second axiom corresponds to the identity e. ♣

Example 4.2 (Meta-monoids). Our main examples of algebraic structures will be meta-monoids (see

Section 2.1). Note that the definition of a meta-monoid is already formulated in the language of algebraic

structures. In this case we have infinitely many kinds of objects and infinitely many operations (here C

is the collection of finite sets X of some set Z, the operations are stitching, identity, deletion, renaming,

which are unary, and disjoint union, which are binary). ♣

Now given an algebraic structure A indexed by C, for each α ∈ C we consider the free Q-module

generated by the elements of Aα, denoted by QAα (one can replace Q by any field with characteristic

0), and we extend the operations in a linear or multilinear fashion. In this manner, we can assume from

now on that for an algebraic structure A, each Aα is a Q-module.

Given two algebraic structures A and B indexed by C, then A ⊇ B means that Bα is a submodule of
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Aα for all α ∈ C. An algebraic structure A is called filtered if there exists a filtration

A = A0 ⊇ A1 ⊇ A2 ⊇ · · ·

If an algebraic structure A is filtered, we define the associated graded structure of A (with respect to the

given filtration) to be

grA :=

∞∏
m=0

Am/Am+1.

Here again by the quotient Am/Am+1 we mean the algebraic structure consisting of {Amα /Am+1
α } for

each α ∈ C (since Amα and Am+1
α are Q-modules we can take their quotient). The algebraic structure

grA is indexed by C. More specifically,

(grA)α =

∞∏
m=0

Amα /Am+1
α ,

where α ∈ C. One advantage of working with grA is that it is graded. We denote the degree m piece

Am/Am+1 of grA by grmA. So an element a of (grA)α has the form

a =

∞∑
m=1

am, am ∈ Amα /Am+1
α .

If the operations of A preserve the filtration, this means that an operation

ψα1,...,αk
α0

: Aα1
× · · · × Aαk → Aα0

satisfies

ψα1,...,αk
α0

: Am1
α1
× · · · × Amkαk → A

m1+···+mk
α0

for all m1, . . . ,mk, then grA inherits the operations from A. However the induced operations on grA
may or may not satisfy the axioms satisfied by the operations of A.

Note that if an algebraic structure A is graded:

A =

∞∏
m=0

Am,

then it has a canonical filtration given by

Am =

∞∏
n=m

An.

With respect to the canonical filtration we have

grA =

∞∏
m=0

Am/Am+1 =

∞∏
m=0

Am = A.

So in particular we have gr(grA) = grA.
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Consider two filtered algebraic structures A and B indexed by C, i.e. we have filtrations

A = A0 ⊇ A1 ⊇ A2 ⊇ · · · , B = B0 ⊇ B1 ⊇ B2 ⊇ · · · .

A map f : A → B between two algebraic structures consists of a collection of module homomorphism

{fα : Aα → Bα}, one for each α ∈ C. A map f is called filtered if it preserves the filtration of A and B:

f(An) ⊆ Bn, n = 1, 2, . . .

A filtered map f between two filtered algebraic structures induces a graded map grf between their

associated graded structures

grf : grA → grB

given by grf([a]n) = [f(a)]n, where a ∈ An and [a]n denotes its equivalence class in An/An+1. Now we

are ready to define the main construction of this section:

Definition (Expansions). An expansion is a filtered map Z from a filtered algebraic structure A to its

associated graded grA
Z : A → grA

such that the induced graded map grZ : grA → gr(grA) = grA is the identity map.

Let me unpack the above definition. First of all, since the map Z is filtered, we have

Z(a) ∈
∏
m≥n

Am/Am+1, for a ∈ An.

We can make the condition for Z more concrete as follows: let [a]n ∈ An/An+1, we have

grZ([a]n) = [Z(a)]n = [a]n.

In other words, for a ∈ An, we have

Z(a) = [a]n + higher order terms. (4.1)

When grA inherits the operations from A, we say that an expansion Z is homomorphic if it commutes

with the operations of A. We are interested in finding homomorphic expansions of various algebraic

structures.

Example 4.3 (Taylor Expansions). The prototypical example of an expansion is the Taylor expansion.

Let A be the algebra over R of analytic functions f : R→ R. Let I be the ideal

I = {f ∈ A : f(0) = 0}.

Then one obtains a filtration of A given by

A = I0 ⊇ I ⊇ I2 ⊇ · · · ,
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where Im denotes the product ideal. We can then define the associated graded

grA =

∞∏
n=0

In/In+1.

In this case it is quite easy to figure out what the n-th degree piece of grA should be. Specifically, an

element of In has the form

f = xng, for some g ∈ A.

Therefore

In/In+1 = span{xn}.

Now an expansion Z : A → grA is given by

Z(f) =

∞∑
n=0

f (n)(0)

n!
xn.

To check that Z is indeed an expansion is almost a tautology. If f ∈ An, then f has the form

f = xng = xn
(
g(0) + g′(0)x+

g′′(0)

2!
x2 + · · ·

)
.

Thus

Z(f) = xng(0) + higher ordered terms = [f ]n + higher ordered terms,

as expected, where [f ]n just denotes the n-th degree term of f . Note that the expansion is clearly

homomorphic:

Z(fg) = Z(f)Z(g)

since the Taylor series of a product is the product of Taylor series. ♣

Now given an algebraic structure A indexed by C, we describe a canonical procedure to obtain a

filtration of A as follows. Again for each α ∈ C we consider the free Q-module QAα generated by the

elements of Aα and extend the operations in a linear or multilinear manner. Then we define I, the

augmentation ideal, to be the algebraic structure indexed by C given as follows. For each α ∈ C we

define Iα to be the submodule of Aα given by

Iα =

{
n∑
k=1

akxk :

n∑
k=1

ak = 0 and xk ∈ Aα

}
.

For m ≥ 0, we let I0 = A, and Im be the algebraic structure defined as follows. For each α ∈ C,

Imα consists of all outputs of algebraic expressions in Iα, where an algebraic expression is a arbitrary

composition of the operations in A, that have at least m inputs in I and possibly, further inputs in A
(note that the inputs are not necessarily of the same kinds). It is clear that Im ⊇ Im+1 for m ≥ 0,

meaning that Imα ⊇ Im+1
α for all α ∈ C. We then have a filtration of A

A = I0 ⊇ I ⊇ I2 ⊇ · · ·
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and its associated graded

grA =

∞∏
n=0

In/In+1.

It is clear that for this particular filtration, the operations of A preserve the filtration, and therefore grA
automatically inherits the operations of A. When we write grA without specifying an explicit filtration,

we mean the augmentation ideal filtration.

In practice, to find the associated graded structure of an algebraic structure, the following proposition

is useful.

Proposition 4.1 ([BND14]). Let B be a graded algebraic structure and A a filtered algebraic structure
both indexed by C. Suppose that we have a surjective graded map π : B → grA. If we have a filtered map
ZB : A → B such that π � grZB : B → B is the identity map, then π : B → grA is an isomorphism (of
modules) and Z = ZB � π : A → grA is an expansion. In short we have the commutative diagram

B

A grA

π
ZB

Z

grZB

If ZB is homomorphic, then Z is also homomorphic.

Proof. The map π is surjective by assumption, and the condition π � grZB = id shows that it is also

injective. To show that Z is an expansion, first of all note that Z is filtered because ZB is filtered and π

is graded. We can write the condition π � grZB = id more explicitly as

ZB(π(bn)) = bn + higher order terms, for bn ∈ Bn.

Now for a ∈ An and [a]n ∈ An/An+1, there exists a unique bn ∈ Bn such that π(bn) = [a]n. It follows

that

grZ([a]n) = [Z(a)]n = [π(ZB(π(bn)))]n = [π(bn)]n = [a]n.

Therefore Z is an expansion, as required.

To summarize, to find the associated graded structure grA of a filtered algebraic structure A we need

to construct a surjective graded map π : B → grA and a filtered map ZB : A → B such that

ZB(π(bn)) = bn + higher order terms, for bn ∈ Bn. (4.2)

Then B is grA and ZB � π is an expansion. We will illustrate this method in the concrete case ofW, the

meta-monoid of w-tangles.

4.2 The Associated Graded Structure of w-Tangles

In this section I describe the associated graded structure grW of the meta-monoid W of w-tangles. We

assume the readers have some familiarity with finite-type theory (see [BN95]), otherwise they can safely

skip this section.
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Consider the meta-monoidW of w-tangles. For a finite set X of labels we consider QWX and extend

the operations in a linear or multilinear fashion. Following the theory of finite type invariants (see

[BND16, BN95]), we introduce a new type of crossings

We call the crossings on the left hand side semi-virtual crossings. Here again the rest of a w-tangle outside

the crossings will stay the same. A w-tangle with semi-virtual crossings, which we also call singular w-
tangle, is an element of QWX . In particular, a singular w-tangle with n semi-virtual crossings is a linear

combination of 2n w-tangles.

Recall that the augmentation ideal IX consists of elements of the form

n∑
k=1

akxk,

n∑
k=1

ak = 0, xk ∈ WX for k = 1, . . . , n.

Since the sum of the coefficients is 0 we can rewrite the linear combination as

n−1∑
k=1

ak(xk − xn).

Therefore we see that IX is generated by differences x−y. Now for two w-tangles x, y ∈ WX , we can turn

x into y provided we can turn a crossing to a virtual crossing and vice versa. Concretely, we can turn all

the crossings of x to virtual crossings, rearrange the virtual crossings to obtain a diagram representation

of y where each crossing is virtual, and then turn the virtual crossings to the corresponding crossings

of y. We can turn a positive crossing to a virtual crossing at the cost of a semi-virtual crossing and vice

versa as follows.

Similarly we can turn a negative crossing to a virtual crossing and vice versa at the cost of a semi-virtual

crossing as follows.
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In each case the cost is a singular w-tangle with one semi-virtual crossing. Thus we can write x− y as a

linear combination of singular w-tangles each with one semi-virtual crossing. In other words, the ideal

IX is spanned by singular w-tangles with one semi-virtual crossing. It follows that ImX is spanned by

singular w-tangles with m semi-virtual crossings.

To proceed, we are going to define the meta-monoid of arrow diagrams, which we denote by Aw. We

will show that Aw is in fact grW. Let X be a finite set of labels, consider the collection of |X| parallel

directed lines labeled by X, which we also call a skeleton. Then an arrow diagram on a skeleton labeled

by X is the skeleton together with a collection of arrows between the directed lines.

In the figure, we use thick lines to denote the skeleton and thin lines to denote the arrows. Then we let

AwX be the Q-module generated by arrow diagrams on the skeleta labeled by X modulo the TC (tails
commute) relations

and the 6T relations

Note that the TC relations allow us to simplify the 6T relations to obtain the (directed)
−→
4T relations

Let me explain the pictures. Here the thick lines denote three disjoint parts of the skeleton, which may

belong to different lines. The dotted parts . . . ’s indicate the remaining parts of the diagrams, which

stay unchanged on both sides. Note that we can have any number of arrows in the dotted parts. The

collection {AwX} forms a meta-monoid with the obvious stitching operation: mi,j
l means connecting the

head of strand i to the tail of strand j combinatorially and calling the resulting strand l, for instance
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To delete a strand labeled a, if there are arrows connected to the strand, the result is 0, otherwise we

can just remove the strand from the diagram. The other operations are straightforward. A special type

of arrow diagrams are the arrow diagrams with a single arrow, which we denote by aij

Note that we can obtain any arrow diagram from a collection of arrow diagrams with a single arrow

together with the disjoint union and stitching operations. The meta-monoid Aw is graded by the number

of arrows in an arrow diagram.

Proposition 4.2 ([BND16, BND14]). The associated graded structure ofW is Aw.

Proof. Following Proposition 4.1 we need to establish the following commutative diagram

Aw

W grW

π
ZAw

Z

grZAw

Let us first define the map π : Aw → grW. From the above discussion it suffices to define π on arrow

diagrams with a single arrow. We set

Notice that the arrow goes from the overstrand to the understrand. As an example, let us look at the

image of the arrow diagram

We first break the diagram as follows
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Then by mapping each single arrow to a semi-virtual crossing and then stitch the strands together, where

if two strands are far apart we bring them together via virtual crossings, we obtain

Using the notations for a single arrow and a crossing we get

π(aij) = R+
i,j − 1 or R+

i,j = π(aij) + 1.

The map π is clearly graded, we need to show that it is well-defined and is surjective. First of all observe

that the image of an arrow diagram with m arrows lies in Im/Im+1. Two realizations of the same arrow

diagram can be turn into one another at the cost of w-tangles with m + 1 semi-virtual crossings, which

are zero when we quotient out by Im+1. Now let us check the relations. We can rewrite the TC relations

as

or in terms of equations aijaik − aikaij = 0 (recall that we compose from bottom to top). To show that

its image is 0, we start with the following topological fact

which follows from the OC relations. In terms of equations we obtain

R+
i,jR

+
i,k −R

+
i,kR

+
i,j = 0.
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Then we have

π(aijaik − aikaij) = (R+
i,j − 1)(R+

i,k − 1)− (R+
i,k − 1)(R+

i,j − 1) = R+
i,jR

+
i,k −R

+
i,kR

+
i,j = 0,

as required. Similarly for the 6T relations we first rewrite it in a vertical form

or in equation

[ai,j , ai,k] + [ai,j , aj,k] + [ai,k, aj,k] = 0. (4.3)

To show that its image is 0 we consider the Reidemeister 3 relation

or in equation R+
j,kR

+
i,kR

+
i,j −R

+
i,jR

+
i,kR

+
j,k = 0. It follows that

(π(ajk) + 1)(π(aik) + 1)(π(aij) + 1)− (π(aij) + 1)(π(aik) + 1)(π(ajk) + 1) = 0.

Note that the terms π(ajkaikaij) and π(aijaikajk) vanish because we mod out by I3. Therefore the

above equation reduces to the equation

π([ai,j , ai,k] + [ai,j , aj,k] + [ai,k, aj,k]) = 0,

as required.

To see that π is surjective, consider an element of Im/Im+1, i.e. a w-tangle D with m semi-virtual

crossings modulo w-tangles withm+1 semi-virtual crossings. We can associate withD an arrow diagram,

a.k.a. π−1(D) as follows. We go along the skeleton of D, and mark the positions of the semi-virtual

crossings, ignoring the usual crossings. Then we replace each semi-virtual crossings by an arrow that

goes from the overstrand to the understrand. Concretely let us look at an example, but the argument

works for the general case.
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Now to see that the arrow diagram is indeed π−1(D) we need to show that the following two w-tangles

represents the same element in Im/Im+1. This follows because one can turn crossings to virtual cross-

ings and vice versa at the cost of w-tangles with m + 1 semi-virtual crossings, which vanish since we

quotient out by Im+1.

Now we define the expansion ZAw :W → Aw by sending the crossings to

Here we use the notation ea and “/” in the middle of an arrow to denote an exponential of arrows,

as described above. We then extend ZAw to an arbitrary w-tangle using disjoint union and stitching.

Therefore ZAw is homomorphic by construction. To show that ZAw is well-defined, we need to check

that ZAw satisfies the R2 relation, the R3 relation and the OC relations. For the R2 relation we consider

two cases depending on the orientations of the strands

The first R2 move is clearly satisfied since eae−a = 1. For the second R2 move the image of the left hand

side under ZAw can be written as

Here again an arrow with a “/” denotes an exponential of arrows, where the top exponential is ea and the

bottom exponential is e−a. The TC relation allows us to switch the tails of the arrows, then eae−a = 1,

as required.

Let us look at the left hand side of the R3 relation under ZAw

ZAw(R+
jkR

+
ikR

+
ij) = eajkeaikeaij

= eajkeaik+aij (because of the TC relation: [aij , aik] = 0)

= eaik+aij+ajk (because of the
−→
4T relation: [aij + aik, ajk] = 0).
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Similarly the right hand side of R3 is given by

ZAw(R+
ijR

+
ikR

+
jk) = eaijeaikeajk

= eaij+aikeajk (because of the TC relation: [aij , aik] = 0)

= eaik+aij+ajk (because of the
−→
4T relation: [aij + aik, ajk] = 0),

as required. For the OC relation, its image under ZAw is

The two sides are then the same due to the TC relation. Finally to see that ZAw is an expansion we need

to verify that

ZAw(π(an)) = an + higher order terms,

where an ∈ Awn , i.e. an arrow diagram with n arrows. By construction it suffices to verify for the case

n = 1. We have that

Then for a general w-tangle we obtain the identity by homomorphicity of ZAw . Identifying Aw with grW
and Z with π ◦ ZAw we obtain a homomorphic expansion.



Chapter 5

Relations with Lie Algebras

In this chapter we describe how the formalism of associated graded spaces and expansions developed

in chapter 4, or more specifically, the meta-monoid of arrow diagrams Aw, gives rise to Γ-calculus. The

key idea is the relationship between arrow diagrams and Lie algebras. This chapter is mainly expository,

which depends on chapter 4 but is quite independent of other chapters and can be skipped on first

reading. The materials here are mainly taken from [BN16a].

5.1 From Aw to Lie algebras

In this section we aim to elucidate the connection between Aw and Lie algebras. First let us recall the

semidirect product of two Lie algebras. Let g and h be finite-dimensional Lie algebras and suppose that

g acts on h by derivations, this means that

x · [φ, ψ] = [x · φ, ψ] + [φ, x · ψ], x ∈ g, φ, ψ ∈ h.

Then the semidirect product of g and h, denoted by hog, is h⊕g equipped with the following Lie bracket:

[(φ1, x1), (φ2, x2)] = ([φ1, φ2] + x1 · φ2 − x2 · φ1, [x1, x2]),

where φ1, φ2 ∈ h and x1, x2 ∈ g. We leave it to the readers to check that the above is indeed a Lie

bracket. When h is g∗ with the trivial Lie bracket we define

Ig := g∗ o g.

Here g acts on g∗ by the coadjoint action:

(x · φ)(y) = φ([y, x]), x, y ∈ g, φ ∈ g∗.

The Lie algebra Ig is a special case of what is known as a double (see [CP94]).

Now given a finite dimensional Lie algebra g we can define a meta-monoid U(Ig) as follows. Let

55
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U(Ig) be the universal enveloping algebra of Ig. For a finite set of labels X, we let

U(Ig)X = U(Ig)⊗̂X .

Here each factor in the tensor product is labeled by an element of X and ⊗̂ is the completed tensor

product, i.e. we allow series instead of just finite summations. For the completion, we define the degree

of g∗ to be 1 and the degree of g to be 0. So for instance the element φ1φ2⊗φ1x1⊗x2
2, where φ1, φ2 ∈ g∗

and x1, x2 ∈ g, has degree 2 + 1 + 0 = 3. In general we should also specify the labels of the components

of the tensor product, but we suppress the labels when they do not play a role or if no ambiguity is

ensued.

The operations in a meta-monoid is defined in a straightforward manner: disjoint union corresponds

to tensor product, for example:

(x1φ2 ⊗ x2φ1) t (x1 ⊗ φ2) = x1φ2 ⊗ x2φ1 ⊗ x1 ⊗ φ2,

stitching corresponds to multiplication of tensor factors, for example:

(x1φ2︸︷︷︸
1

⊗x2
2φ1︸︷︷︸
2

⊗x2
1x2︸︷︷︸
3

) �m3,2
2 = x1φ2︸︷︷︸

1

⊗x2
1x

3
2φ1︸ ︷︷ ︸

2

,

where the underbraces indicate the labels, deletion is obtained from the map U(Ig) → Q which is the

identity on Q and zero otherwise, for example

( x1︸︷︷︸
1

⊗x1φ2︸︷︷︸
2

⊗ 1︸︷︷︸
3

) � η3 = x1 ⊗ x1φ2, but ( x1︸︷︷︸
1

⊗x1φ2︸︷︷︸
2

⊗ 1︸︷︷︸
3

) � η1 = 0.

We leave it as an exercise to verify that these operations satisfy the axioms of a meta-monoid. One can

visualize an element of U(Ig)⊗̂X as “beads on strands” as follows. We think of each tensor factor of

U(Ig)⊗̂X as a directed strand and the elements of Ig as beads on a strand. For example,

Then one can interpret the meta-monoid operations visually. For instance the stitching operation is given

by

There is a meta-monoid homomorphism Tg : Aw → U(Ig) given as follows. Since an arrow diagram

can be obtained from a collection of single-arrow diagrams and stitching operations, it suffices to define

Tg on these diagrams. Specifically, choose a basis {xi}ni=1 of g with corresponding dual basis {φi}ni=1 of
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g∗, i.e. φi(xj) = δi,j , the Kronecker δ function. For an arrow, we label it with an index i ∈ {1, . . . , n},
place φi at the tail of the arrow and xi at the head of the arrow and then sum over i:

Here the image lies in U(Ig)⊗{j,k}, where j, k are the labels of the strands. As another example, we have

Note that we read the elements along the orientation of the skeleton.

Proposition 5.1 ([BND16]). The map Tg : Aw → U(Ig) is well-defined, i.e. it does not depend on a choice
of basis and satisfies the

−→
4T and TC relations.

Proof. Let us first show that the map Tg does not depend on a choice of basis. Given two bases {xi}ni=1

and {yi}ni=1 of g with corresponding dual bases {φi}ni=1 and {ψi}ni=1 of g∗ and suppose that

yj =

n∑
i=1

aijxi, ψj =

n∑
i=1

bijφi, j = 1, 2, . . . , n.

Let A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n. We leave it as an exercise in linear algebra to show that

B = (A−1)t. Then it suffices to show that the term

n∑
i=1

φi ⊗ xi ∈ U(Ig)⊗2,

which corresponds to a single arrow, does not depend on a choice of basis. Indeed, we have

n∑
j=1

ψj ⊗ yj =

n∑
j=1

n∑
i=1

bijφi ⊗
n∑
k=1

akjxk

=

n∑
k=1

n∑
i=1

n∑
j=1

bijakjφi ⊗ xk

=

n∑
k=1

n∑
i=1

(BAt)ikφi ⊗ xk

=

n∑
k=1

n∑
i=1

δikφi ⊗ xk (since BAt = I)

=

n∑
i=1

φi ⊗ xi,

as required.

Next let us prove the TC relations
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Under Tg, the left hand side is given by

n∑
i,j=1

. . . xi . . . φjφi . . . xj . . .

and the right hand side is given by

n∑
i,j=1

. . . xi . . . φiφj . . . xj . . .

Here again . . . ’s denote other elements of U(Ig), which stay the same on both sides. Then

n∑
i,j=1

. . . xi . . . φjφi . . . xj . . . −
n∑

i,j=1

. . . xi . . . φiφj . . . xj . . . =

n∑
i,j=1

. . . xi . . . [φj , φi] . . . xj . . . = 0,

since the Lie algebra g∗ is commutative.

Finally let us proceed to show the
−→
4T relation

For that we first let cijk be the structure constants of g, i.e.

[xi, xj ] =

n∑
k=1

cijkxk, 1 ≤ i, j ≤ n.

Note that [φj , xi] = −xi · φj . It is a simple exercise in linear algebra to show that

−xi · φj =

n∑
k=1

cikjφk, 1 ≤ i, j ≤ n.

Under Tg, the left hand side of
−→
4T is

n∑
i,j=1

. . . φjxi . . . φi . . . xj . . . + . . . φj . . . φi . . . xjxi . . .
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and the right hand side is

n∑
i,j=1

. . . xiφj . . . φi . . . xj . . . + . . . φj . . . φi . . . xixj . . .

Taking the difference of both sides we obtain

n∑
i,j=1

. . . [φj , xi] . . . φi . . . xj . . . − . . . φj . . . φi . . . [xi, xj ] . . .

=

n∑
i,j,k=1

. . . cikjφk . . . φi . . . xj . . . −
n∑

i,j,k=1

. . . φj . . . φi . . . cijkxk . . .

=

n∑
i,j,k=1

. . . cijkφj . . . φi . . . xk . . . −
n∑

i,j,k=1

. . . φj . . . φi . . . cijkxk . . . = 0,

as required.

5.2 The Lie Algebra g0

In this section let us specialize to the simplest non-trivial case, namely when g is the non-abelian 2

dimensional Lie algebra. Specifically, as a vector space g is two-dimensional over Q given by

g = spanQ{c, w},

and the Lie bracket is given by [w, c] = w. Then the dual Lie algebra g∗ is given by

g∗ = spanQ{b = c∗, u = w∗}

and the Lie bracket is given by [b, u] = 0. In order to obtain Ig let us compute the brackets between

elements of g and g∗. For instance, we have

[u,w] = −w · u.

Now by the definition of the coadjoint action we have

(w · u)(c) = u([c, w]) = −u(w) = −w∗(w) = −1.

Thus we get [u,w] = c∗ = b. Similarly we obtain [u, c] = −u, and [b, ·] = 0. In other words, b is central.

Now we let g0 := Ig. So the Lie algebra g0 is the four-dimensional vector space

g0 = spanQ{b, c, u, w}

equipped with the Lie brackets

[b, ·] = 0, [c, u] = u, [c, w] = −w, [u,w] = b. (5.1)
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From our convention the degrees of b and u are 1 and the degrees of c and w are 0. Then one can check

that the Lie bracket preserves the degree and hence g0 is a graded Lie algebra. In practice, it is useful to

have a matrix representation of g0

Proposition 5.2. The Lie algebra g0 has the following faithful representation

b 7→

0 0 −1

0 0 0

0 0 0

 , u 7→

0 0 0

0 0 1

0 0 0

 , c 7→

0 0 0

0 1 0

0 0 0

 , w 7→

0 1 0

0 0 0

0 0 0

 .

Proof. The four matrices are clearly linearly independent and it is easy to check that they also satisfy the

commutation relations given in (5.1).

5.3 The meta-monoid G0

In this section we analyze the meta-monoid U(g0). Let X be a finite set of labels, we define

U(g0)X := U(g0)⊗̂X = Û

(⊕
j∈X

g0,j

)
,

where each g0,j is a copy of g0 and Û denotes the degree-completed universal enveloping algebra. The

Lie algebra
⊕

j∈X g0,j can be given a succinct description as follows: as a vector space⊕
j∈X

g0,j = spanQ{bj , cj , uj , wj : j ∈ X},

and the Lie brackets are given as follows: the Lie brackets of elements with different indices vanish, and

[bj , ·] = 0, [cj , uj ] = uj , [cj , wj ] = −wj , [uj , wj ] = bj

for all j ∈ X. In other words, we can index the generators of g0 by the labels in X to specify which

factors of the tensor product they belong to. This results in a more streamlined notations. Concretely,

we can write

buw︸︷︷︸
i

⊗wu2︸︷︷︸
j

⊗ c2w3︸ ︷︷ ︸
k

−→ biuiwiwju
2
jc

2
kw

3
k, i, j, k ∈ X.

Since the bj ’s are central, we can absorb them into the ground field, and so we think of an element

of Û
(⊕

j∈X g0,j

)
as a power series in ci, uj , wk with coefficients rational functions in bj ’s. For the

completion recall our convention that the degrees of bi and uj are 1 and the degrees of ci and wk are 0.

By the PBW theorem [AK08] we can write each element of the universal enveloping algebra in terms

of monomials in some particular order of the basis elements which can be fixed in advance. For that

purpose let us introduce the ordering operators O(·|specs), which are linear operators

O(·|specs) : QJbj , cj , uj , wj : j ∈ XK→ Û

(⊕
j∈X

g0,j

)

Here QJbj , cj , uj , wj : j ∈ XK is the algebra of power series in the commuting variables bj , cj , uj , wj
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where deg bj = deg uj = 1, deg cj = degwj = 0, for j ∈ X, and specs specifies how we should order the

variables. Since bj ’s are central, we only need to order cj , uj , wj (compare with normal ordering in the

physics literature [VMMC06, PHP+07]). For instance,

O(eb1u1e
c1eu2w2|c1u1, w2u2) = eb1ec1u1w2e

u2 = w2e
u2eb1ec1u1,

where the second equality follows because elements of different indices commute.

Now I can describe our meta-monoid G0. For a finite set X of labels, let (G0)X be the collection of

commutative series of the form

f = ω exp

 ∑
i,j∈X

li,jbicj + qi,juiwj

 , (5.2)

where each li,j is an integer and ω and qi,j are power series in bk for k ∈ X. The element f is character-

ized by a triple consisting of the “scalar” ω and two labeled matrices L and Q

L =

(
ω X

X lij

)
, Q =

(
ω X

X qij

)
.

For aesthetic purpose we stick ω to the empty corners of L and Q. The scalar ω is required to satisfied

the following condition

(a) ω is a function of ebi , i ∈ X, and with the substitution ebi → ti we have ω|ti→1 = 1.

The matrix Q is also required to satisfy certain conditions. First I need to introduce some notations. Let

D be a diagonal matrix labeled by X whose (j, j)-diagonal entry is bj for j ∈ X. For column vectors

ttt = (tj : j ∈ X)T and aaa = (aj : j ∈ X)T we define

tttaaa :=
∏
j∈X

t
aj
j .

Then for a matrix A = (aaaj : j ∈ X), where aaaj = (aij : i ∈ X)T (the jth column of A is aaaj), we define tttA

to be the diagonal matrix whose (j, j)-entry is given by

tttaaaj =
∏
i∈X

t
aij
i .

Now I require the matrix Q to satisfy the following two conditions:

(i) each entry of DQ is a rational function in ebi ’s, so we can make the change of variables ebi → ti

for i ∈ X,

(ii) with the substitution ebi → ti for i ∈ X we have DQ
∣∣
ti→1

= 000.

where 000 is the n× n matrix consisting of 0’s. There is a map from (G0)X to U(g0)X given by

f 7→ O(f |ciuiwi for i ∈ X).

For each index the order is cuw, which we call cuw-order for short.
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In order to perform stitching, we need to understand how to reorder the generators. For that we

introduce the following switching operators

Nuc : QJb, u, c, wK→ QJb, u, c, wK

defined as follows. For f ∈ QJb, u, c, wK, we have

O(f |uc) = O((f �Nuc)|cu).

Notice that we only switch two consecutive variables in the ordering and the order of the remaining

variables remains intact. As a simple example, in g0 we have [c, u] = u, or cu− uc = u, so uc = cu− u =

(c− 1)u. It follows that uc2 = (c− 1)2u. Therefore

uc2 �Nuc = (c− 1)2u.

In a similar fashion we can define the switching operators Nwc that switches the order wc to the order

cw and Nwu that switches the order wu to uw. To understand these switching operators the following

proposition will be useful.

Proposition 5.3 ([BN16a]). In U(g0) we have the following identities

1. umcn = (c−m)num,

2. wmcn = (c+m)nwm,

3. wmun =

min{m,n}∑
j=0

(
m

j

)(
n

j

)
j! (−b)jun−jwm−j =

min{m,n}∑
j=0

m!n! (−b)jun−jwm−j

j! (m− j)! (n− j)!
,

where m and n are non-negative integers.

Proof. The first two identities follow from [c, u] = u and [c, w] = −w. For the third identity, using

[u,w] = b, one can use induction. Alternatively, one can observe that to obtain the term un−jwm−j , we

have to choose j elements from u’s, j elements from w’s, there are j! ways for them to interact, and each

interaction will annihilate u and w and return an element −b.

Proposition 5.4 ([BN16a]). We have

eβu+γc �Nuc = eγc+e
−γβu,

eαw+γc �Nwc = eγc+e
γαw,

where α, β, γ are scalars.

Proof. Let us show the first identity. The second identity is analogous and we leave it as an exercise. We

have

O(eβu+γc|uc) = eβueγc =

∞∑
r,s=0

βrγs

r! s!
urcs =

∞∑
r,s=0

βrγs

r! s!
(c− r)sur

=

∞∑
r=0

βr

r!

( ∞∑
s=0

γs

s!
(c− r)s

)
ur =

∞∑
r=0

βr

r!
eγ(c−r)ur
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= eγc
∞∑
r=0

(e−γβu)r

r!
= eγcee

−γβu = O(eγc+e
−γβu|cu),

as required.

Example 5.1. As a simple example, we have

ebc+uw �Nuc = ebc+e
−buw.

To get the corresponding identity in the universal enveloping algebra we need to apply the ordering

operator:

O(ebc+uw|wuc) = O(ebc+e
−buw|wcu).

Expanding both sides we obtain the following identity in the universal enveloping algebra

∞∑
m,n=0

bm

m!n!
wnuncm =

∞∑
m,n=0

bme−nb

m!n!
wncmun =

∞∑
m,n,p=0

(−n)pbm+p

p!m!n!
wncmun,

where equality is interpreted degree by degree (recall that these generators do not have the same de-

grees). ♣

Proposition 5.5 ([BN16a]). We have the following identities

O(eαw+βu|wu) = O(e−bαβ+αw+βu|uw),

eβu+αw+γuw �Nwu = νe−bναβ+ναw+νβu+νγuw,

where ν = (1 + bγ)−1, and α, β, γ are scalars.

Proof. The first identity is the familiar Weyl commutation relation. For completeness we present here a

combinatorial proof. The left hand side is

O(eαw+βu|wu) = eαweβu =

∞∑
m,n=0

αmβn

m!n!
wmun

=

∞∑
m,n=0

αmβn

m!n!

min{m,n}∑
r=0

m!n! (−b)r

r! (m− r)! (n− r)!
un−rwm−r


=

∞∑
m,n=0

min{m,n}∑
r=0

αmβn(−b)r

r! (m− r)! (n− r)!
un−rwm−r

=

∞∑
m,n=0

min{m,n}∑
r=0

(−bαβ)r

r!

(βu)n−r

(n− r)!
(αw)m−r

(m− r)!

= e−bαβeβueαw = O(e−bαβ+βu+αw|uw),

as required.

The case that involves the quadratic term uw is a bit more complicated. First let us recall a familiar

trick: for a series p(x) we have

p(x)eαx = p(∂α)eαx,
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where ∂α denotes the formal partial derivative with respect to α. We can then rewrite the left hand side

as follows.

O(eβu+αw+γuw|wu) = O(eγuweβu+αw|wu) = O(eγ∂β∂αeβu+αw|wu) = eγ∂β∂αO(eβu+αw|wu)

= eγ∂α∂βO(e−bαβ+αw+βu|uw) (by the first identity)

= O(eγ∂α∂βe−bαβ+αw+βu|uw)

Now we let

ψ(α, β, γ) = eγ∂α∂βe−bαβ+αw+βu

as a formal power series in α, β, γ. Then ψ satisfiesψ(α, β, 0) = e−bαβ+βu+αw

∂γψ = ∂α∂βψ.

Observe that there exists a unique series that satisfies the above initial value problem (IVP) since we can

express the coefficient of a term of a certain degree in terms of the coefficients of lower degree terms.

All that remains is to show that the series in the right hand side

νe−bναβ+ναw+νβu+νγuw

also satisfies the IVP. Clearly the initial condition is satisfied. To check that the series also satisfies the

PDE is an exercise in multivariable calculus and we leave the details to the readers.

Example 5.2. For a simple example we have

O(euw|wu) = O
(

1

1 + b
e(

1
1+b )uw

∣∣∣∣uw) .
Expanding both sides we obtain

∞∑
m=0

1

m!
wmum =

∞∑
m=0

1

m!

( ∞∑
s=0

(−b)s
)m+1

umwm.

Again equality is interpreted degree by degree. ♣

Now we are ready to define the stitching operation. First we extend the switching operators to allow

indices. For instance we define Nuicj
k to be

f �Nuicj
k := (f �Nuicj )|ui→uk,cj→ck

or in the universal enveloping algebra

O((f |ui→uk,cj→ck)
∣∣ . . . ukck . . . ) = O(f �Nuicj

k | . . . ckuk . . . ).

We define the other switching operators similarly. We define the stitching operation mi,j
k in G0 by

pulling back the stitching operation in U(g0). Namely, for f ∈ QJ. . . , ci, ui, wi, cj , uj , wj . . .K the stitching
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operation mi,j
k is characterized by

O(f | . . . ciuiwicjujwj . . . ) �mi,j
k = O(f �mi,j

k | . . . ckukwk . . . ).

Note that mi,j
k on the left hand side is the stitching operation in U(g0). Concretely we first put the two

orderings ciuiwi and cjujwj next to each other on the strand labeled k

ciuiwicjujwj

and then use the switching operators to turn the above to the cuw order. Namely

ciui(wicj)ujwj
N
wicj
k−−−−→ ci(uick)wkujwj

N
uick
k−−−−→ cickuk(wkuj)wj

N
wkuj
k−−−−→ cickukukwkwj .

Finally we relabel ci to ck and wj to wk. From the construction of the stitching operation we see that

meta-associativity is automatically satisfied because it is the pullback of the stitching operation in U(g0).

However, I need to check that mi,j
k is well-defined, i.e. after stitching the scalar ω satisfies condition

(a), the matrix L consists of integer entries, and the matrix Q satisfies conditions (i) and (ii). For this

purpose let me consider an arbitrary element ζ of (G0){i,j}∪S given in matrix form by

L =


ω i j S

i lii lij llliS

j lji ljj llljS

S lllSi lllSj lllSS

 , Q =


ω i j S

i qii qij qqqiS

j qji qjj qqqjS

S qqqSi qqqSj qqqSS

 ,

and the matrix D in this case is

D =


i j S

i bi 0 000

j 0 bj 000

S 000 000 bbbSS

 .

Then it is a computation exercise to verify that for ζ �mi,j
k the matrix L is given by k S

k lii + lij + lji + ljj llliS + llljS

S lllSi + lllSj lllSS

 ,

which consists of integer entries. The scalar part is given by, where we set ebx → tx,

ω

1 + t
lij
k t

ljj
k ttt

lllSj
S bkqji

.

Observe that bkqji is a function of ebx by assumption and when we set tx → 1 the term bkqji vanishes.
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Thus the scalar part satisfies condition (a). Finally the matrix part DQ|ebx→tx is given by
k S

k
t
−lij−ljj
k ttt

−lllSj
S bkqij+t

lij+ljj
k ttt

lllSj
S bkqji+bk(qii+qjj)+b

2
k(qijqji−qiiqjj)

1+t
lij+ljj
k ttt

lllSj
S bkqji

t
−lij−ljj
k ttt

−lllSj
S bkqqqiS+bkqqqjS+b2k(qjiqqqiS−qiiqqqjS)

1+t
lij+ljj
k ttt

lllSj
S bkqji

S
t
lij+ljj
k ttt

lllSj
S (bbbSSqqqSi−bkbbbSS(qjjqqqSi−qjiqqqSj))+bbbSSqqqSj

1+t
lij+ljj
k ttt

lllSj
S bkqji

bbbSSqqqSS−t
lij+ljj
k ttt

lllSj
S bkbbbSS(qqqSiqqqjS−qjiqqqSS)

1+t
lij+ljj
k ttt

lllSj
S bkqji

 .

In this form I can check readily from the assumption ζ ∈ (G0){i,j}∪S that the two conditions (i) and (ii)

are still satisfied. Condition (i) follows because in each term the powers of b’s agree with the powers of

q’s. Condition (ii) is true because when all tx are set to 1 we have bkqij = bkqji = 0, bkqqqiS = bkqqqjS = 000,

bbbSSqqqSi = bbbSSqqqSj = 000, and bbbkqii = bbbkqjj = 1, bbbSSqqqSS = I. Therefore G0 is a meta-monoid. We summarize

the above discussion in the following proposition.

Proposition 5.6 ([BN16a]). We have a meta-monoid homomorphism ι : G0 → U(g0) given by

f 7→ O(f |cjujwj : j ∈ X),

where f ∈ (G0)X .

Proposition 5.7 ([BN16a]). There is a meta-monoid homomorphism ψ from the meta-monoid of w-tangles
W to the meta-monoid G0 given by

R±i,j 7→ exp

(
±bicj +

e±bi − 1

bi
uiwj

)
Mathematica R©. Before presenting the proof let us describe our implementation of G0 in Mathematica.

A reader with Mathematica can get the notebook http://www.math.toronto.edu/vohuan/. First we write

a subroutine CF to simplify the expressions

CF[expr_] := expr // Simplify;

 /: CF[[ω_, λ_]] := [CF[ω], CF[λ]];

 /: [ω1_, λ1_] [ω2_, λ2_] := CF @[ω1 ω2, λ1 + λ2];

[ω1_, λ1_] ≡ [ω2_, λ2_] := CF[ω1 ⩵ ω2  λ1 ⩵ λ2];

Notice that here the input has the form E[ω, λ], where ω is the scalar part and λ is the bilinear form in

bicj and ukwl. So for instance we can input an arbitrary element of (G0){i,j} as

[ω, Sum[lx,y bx cy + qx,y ux wy, {x, {i, j}}, {y, {i, j}}]]

and the output is

[ω, bi ci li,i + bi cj li,j + bj ci lj,i + bj cj lj,j + ui wi qi,i + ui wj qi,j + uj wi qj,i + uj wj qj,j]

Notice also that we use the notation ≡ to compare two elements of the form E[ω1, λ1] and E[ω2, λ2].

Now we program the switching operators Nuicj
k , Nwicj

k , Nwiuj
k :

http://www.math.toronto.edu/vohuan/
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Nui_ cj_→k_[[ω_, λ_]] := CF

[ω, ⅇ-γ β uk + γ ck + (λ /. cj ui → 0)] /. γ → ∂cj λ, β → ∂ui λ;

Nwi_ cj_→k_[[ω_, λ_]] := CF

[ω, ⅇγ α wk + γ ck + (λ /. cj wi → 0)] /. γ → ∂cj λ, α → ∂wi λ;

Nwi_ uj_→k_[[ω_, λ_]] := CF

[ν ω , -bk ν α β + ν β uk + ν δ uk wk + ν α wk + (λ /. wi uj → 0)] /. ν → (1 + bk δ)-1

/. α → ∂wi λ /. uj → 0, β → ∂uj λ /. wi → 0, δ → ∂wi,uj λ;

and the stitching operation

gmi_,j_→k_[[ω_, λ_]] := CFModule{x},

[ω, λ] // Nwi cj→x // Nui cx→x // Nwx uj→x /. {ci → ck, wj → wk, y_x ⧴ yk, bi j → bk}

Note that here we use the notation gmi,j
k to distinguish it from the stitching operations in other meta-

monoids.

Proof. Again we just need to check the R2 moves, R3 moves and OC moves. One can check them

directly by hand, but it is faster to use Mathematica. First we define the crossings

gRi_,j_
+ = 1, bi cj + bi

-1 ⅇbi - 1 ui wj; gRi_,j_
- = 1, -bi cj + bi

-1 ⅇ-bi - 1 ui wj;

Again we use the notation gR+
i,j to distinguish it from the crossings in other meta-monoids. For the R2

move we consider

gRi,j
+ gRk,l

- // gmi,k→i // gmj,l→j

The output is

[1, 0]

as expected. For the R3 move we test the following equality

(gR1,4
+ gR2,5

+ gR6,3
- // gm1,6→1 // gm2,4→2 // gm3,5→3) ≡

(gR1,4
- gR5,2

+ gR6,3
+ // gm1,5→1 // gm2,6→2 // gm3,4→3)

and for the OC move we test the following equality

(gR4,2
+ gR1,3

+ // gm1,4→1) ≡ (gR4,3
+ gR1,2

+ // gm1,4→1)

They both return True, as required.

Next I will present an explicit meta-monoid homomorphism from G0 → Γ̃.

Proposition 5.8. There is a meta-monoid homomorphism η : G0 → Γ̃ given as follows. For a finite set X
of labels we send

ω exp

 ∑
i,j∈X

lijbicj + qijuiwj

 7→
( ω−1 X

X tttL(I −DQ|ebi→ti)

)
,
∑
j∈X

tttllljvvvj

 ,

where L = (lij)i,j∈X , Q = (qij)i,j∈X , lllj is the jth column of L, and D is the diagonal matrix whose
(i, i)-entry is bi for all i ∈ X.

Mathematica R©. Again let us implement the above map in Mathematica:
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G0toΓ[e_] := Module{A, λ, L, ω, Q, n, II, DD, T, M, σ, i, j},

ω = e〚1〛 /. ⅇx_ ⧴ ⅇ
Simplifyx /. bi_⧴Log[ti] // Simplify;

λ = e〚2〛;

A = Union@Casesλ, (b c)a_ ⧴ a, ∞;

L = Outer[Factor[∂b#1 ∂c#2 λ] &, A, A];

Q = Outer[Factor[∂u#1w#2 λ] &, A, A];

n = Length[A];

II = IdentityMatrix[n];

DD = DiagonalMatrix[Table[bi, {i, A}]];

T = DiagonalMatrixTableProducttA〚i〛
L〚i,j〛, {i, 1, n}, {j, 1, n};

σ = SumProducttA〚i〛
L〚i,j〛, {i, 1, n} vA〚j〛, {j, 1, n};

M = T.(II - DD.Q) /. ⅇx_ ⧴ ⅇ
Simplifyx /. bi_⧴Log[ti] // Simplify;

eΓω-1, Table[yi, {i, A}].M.Table[xi, {i, A}], σ;

The subroutine G0toΓ takes an element e in (G0)X and convert it to the corresponding element in Γ̃X .

Proof. Notice first that condition (a) ensures that we can divide by ω. From condition (a) of ω and

conditions (i) and (ii) of Q we see that the image of η is indeed contained in Γ̃. Suppose that X =

{i, j} ∪S, where {i, j} ∩S = ∅. To show that η is a meta-monoid homomorphism we only need to check

that

ζ �mi,j
k � η = ζ � η �mi,j

k , ζ ∈ GX0 . (5.3)

This is a matter of computation. First we need to fix some notations. Suppose that ζ is given by

L =


ω i j S

i lii lij llliS

j lji ljj llljS

S lllSi lllSj lllSS

 , Q =


ω i j S

i qii qij qqqiS

j qji qjj qqqjS

S qqqSi qqqSj qqqSS

 ,

and the diagonal matrix D in this case is

D =


i j S

i bi 0 000

j 0 bj 000

S 000 000 bbbSS

 .

We can check the equation (5.3) directly in Mathematica as follows. First we input ζ using the command

ζ = [ω, Sum[lx,y bx cy + qx,y ux wy, {x, {i, j, S}}, {y, {i, j, S}}]]

And then we check (5.3) using the command

(ζ // G0toΓ // emi,j→k) ≡ (ζ // gmi,j→k // G0toΓ)

Mathematica then returns True, as required.

Remark 5.1. The above proof is purely computational. Let me present a more heuristic reason of why

equation (5.3) should be true, which will also explains where the map η comes from. The following
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discussion follows ideas of Prof Bar-Natan. Again let

f = exp

 ∑
i,j∈X

lijbicj + qijuiwj

 .

To find a matrix representation of f we will define a representation of f on the vector space span {ui :

i ∈ X} given by

f · uk = ι(f)ukι(f)−1,

where ι is the inclusion map defined in Proposition 5.6. We claim that it is indeed a representation, i.e.

ι(f)ukι(f)−1 =
∑
i∈X

γikui.

To find the matrix M = (γij)i,j∈X our strategy is to “push” uk past ι(f). For that, observe that the

following identity can be proven easily by induction

wnu = uwn − nbwn−1, n ∈ Z≥0.

Then we have

exp(qikuiwk)uk =

( ∞∑
n=0

1

n!
qniku

n
i w

n
k

)
uk

=

∞∑
n=0

1

n!
qniku

n
i ukw

n
k −

∞∑
n=1

bk
(n− 1)!

qniku
n
i w

n−1
k

= (uk − bkqikui) exp(qikuiwk).

Similarly using the identity

cnu = u(c+ 1)n,

we obtain

exp(likbick)uk =

∞∑
n=0

1

n!
lnikb

n
i c
n
kuk =

∞∑
n=0

1

n!
lnikb

n
i uk(ck + 1)n

= uk exp(likbi(ck + 1)) = exp(likbi)uk exp(likbick).

Therefore it follows that

γij =


∏
k∈X

exp(lkjbk)(1− bjqjj), i = j,

−
∏
k∈X

exp(lkibk)bjqij , i 6= j.

Then we see that

f � η = DMD−1,

where D again denotes the diagonal matrix whose (j, j)-entry is bj for j ∈ X. In the “beads on strands”

interpretation as in Section 5.1, each term of f can be visualized as a bead diagram. We then obtain

a matrix representation of f by putting uk at the bottom of strand k and then push it past the whole
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diagram. Together with the interpretation of stitching as connecting output to input (see section 3.1)

we see that equation (5.3) is true. Schematically, we can visualize it as follows:

The reason is this, for the left hand side, we first connect the output to the input and then push uk past

the diagram; for the right hand side, we first push ui past the diagram and then connect the output to

the input. Geometrically the two ways should give the same final result, as expected.

To prove the next proposition let us introduce a useful construction known as the Euler operator
[BND16]. For a completed graded algebra with unit, in which all degrees are non-negative (think

of U(g0) in our case) the Euler operator is the operator E : A → A given by Ea = (deg a)a for a

homogeneous element a ∈ A. If f ∈ A is a series that starts with 1, we define the operator Ẽ : A → A

by

Ẽf = f−1Ef.

Note that f is invertible because it starts with 1. We call Z̃ the normalized Euler operator. There are

several important properties of the Euler operator that we need and we refer the readers to [BND16] for

more details.

(a) The operator E is a derivation, i.e.

E(φ1φ2) = (Eφ1)φ2 + φ1Eφ2, φ1, φ2 ∈ A.

(b) The operator Ẽ is one-to-one.

(c) For a series φ ∈ A,

E(eφ) = eφ
(

1− e−adφ

adφ

)
(Eφ).

Here (adφ)(x) = [φ, x] for x ∈ A. In particular when a is an element of degree 1 we have

E(ea) = aea =⇒ Ẽ(ea) = a. (5.4)
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Thus we see that Ẽ plays a role similar to the logarithm. More generally,

if [φ,Eφ] = 0, then Ẽ(eφ) = Eφ. (5.5)

Proposition 5.9 ([BN16a]). We have a commutative diagram

W Aw U(g0)

G0

ψ

Z Tg0

ι

Proof. Since all the maps are meta-monoid homomorphisms, we just need to check the diagram for the

positive crossings and negative crossings. Specifically, we want to show that

e±(bicj+uiwj) = O
(

exp

(
±bicj +

e±bi − 1

bi
uiwj

)∣∣∣∣ui, cjwj) .
Let us prove the positive case, the negative case can be proven analogously. The proof that follows is

a bit computational involved, although the idea is quite straightforward, so a reader can just skip the

proof on first reading.

Note that the exponential on the left hand side is an element of the universal enveloping algebra so

it is not a commutative power series. We can expand it explicitly as

ebicj+uiwj =

∞∑
k=0

(bicj + uiwj)
k

k!
.

And the right hand side can be written as

exp(bicj) exp

(
ebi − 1

bi
uiwj

)

according to the specified order of generators. To show that the two sides are the same we apply Ẽ to

both sides. Since bicj + uiwj has degree 1 we have

Ẽ(ebicj+uiwj ) = bicj + uiwj

by (5.4). The image of the right hand side under Ẽ, using the derivation property of E, is given by

e
−
(
ebi−1
bi

)
uiwje−bicj

(
E(ebicj )e

(
ebi−1
bi

)
uiwj + ebicjE

(
e

(
ebi−1
bi

)
uiwj

))
= e
−
(
ebi−1
bi

)
uiwje−bicj bicje

bicje

(
ebi−1
bi

)
uiwj + e

−
(
ebi−1
bi

)
uiwjE

(
e

(
ebi−1
bi

)
uiwj

)
.

For the first term we have

e
−
(
ebi−1
bi

)
uiwje−bicj bicje

bicje

(
ebi−1
bi

)
uiwj = e

−
(
ebi−1
bi

)
uiwj bicje

(
ebi−1
bi

)
uiwj .
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We can move cj past e−
(
ebi−1
bi

)
uiwj as follows:

e
−
(
ebi−1
bi

)
uiwjcj =

∞∑
k=0

(−1)k
(
ebi − 1

bi

)k ukiwkj
k!

cj

=

∞∑
k=0

(−1)k(cj + k)

(
ebi − 1

bi

)k ukiwkj
k!

(by Proposition 5.3)

=

∞∑
k=0

(−1)kcj

(
ebi − 1

bi

)k ukiwkj
k!

+

∞∑
k=1

(−1)k
(
ebi − 1

bi

)k ukiw
k
j

(k − 1)!

=

(
cj −

(
ebi − 1

bi

)
uiwj

)
e
−
(
ebi−1
bi

)
uiwj .

It then follows that

e
−
(
ebi−1
bi

)
uiwje−bicj bicje

bicje

(
ebi−1
bi

)
uiwj = bicj − (ebi − 1)uiwj . (5.6)

Now let us look at the term

e
−
(
ebi−1
bi

)
uiwjE

(
e

(
ebi−1
bi

)
uiwj

)
= Ẽ

(
e

(
ebi−1
bi

)
uiwj

)
.

Observe that

E

((
ebi − 1

bi

)
uiwj

)
= E

((
ebi − 1

bi

)
ui

)
wj

because degwj = 0. Then

E

((
ebi − 1

bi

)
ui

)
= E

( ∞∑
k=0

bki
(k + 1)!

ui

)
=

∞∑
k=0

bki
k!
ui = ebiui

since E(bki ui) = (k + 1)bki ui. So

E

((
ebi − 1

bi

)
uiwj

)
= ebiuiwj .

In particular [
E

((
ebi − 1

bi

)
uiwj

)
,

(
ebi − 1

bi

)
uiwj

]
= 0.

Therefore

Ẽ

(
e

(
ebi−1
bi

)
uiwj

)
= E

((
ebi − 1

bi

)
uiwj

)
= ebiuiwj (5.7)

by (5.5). From (5.6) and (5.7) we see that the image of the right hand side under Ẽ is

bicj + uiwj ,

as required.

Finally I can summarize our discussion in Chapter 4 and Chapter 5 in the following proposition.
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Proposition 5.10. We have the following commutative diagram

W
ψ

((ϕ

!!

Z // Aw
Tg0 // U(g0)

G0

ι

OO

η
��

Γ̃

Proof. We have established that all the maps in the diagram are meta-monoid homomorphisms. There-

fore it suffices to verify the diagram for the positive crossings and the negative crossings. Notice that the

upper half of the diagram is already commutative, thus the remaining part to check is the lower half of

the diagram. Namely we just need to show that

R±i,j � ϕ = R±i,j � ψ � η.

Again the above equations can be verified easily by hand, but we can just use Mathematica via the

commands

eRi,j
+ ≡ (gRi,j

+ // G0toΓ)

eRi,j
- ≡ (gRi,j

- // G0toΓ)

Recall that in Mathematica we denote R±i,j � ϕ by eR±i,j; R
±
i,j � ψ by gR±i,j , and the map η by G0toΓ. The

output is True and that establishes the commutativity of the diagram.

Remark 5.2. Let us investigate the compatibility of the above diagram with the operations orientation

reversal and strand doubling, see [BND16] and [BN15b] for more details. We first consider the operation

Ha of reversing the orientation of strand a. In Aw it is the operation of “flipping” over strand a and

multiplying with −1 for each arrow head or tail that connects to strand a. For instance

Correspondingly in U(g0) it is the antipode map H, i.e. the antihomomorphism given by

H(x) = −x, x ∈ g0.

So for example

H(c2u3w2) = (−w)2(−u)3(−c)2 = −w2u3c2.

To obtain the corresponding image in G0 we would need to apply the switching operators to turn the

order wuc to the order cuw. We can implement the antipode operation in Mathematica as follows, where

we use gH[a] to denote the subroutine that applies the antipode operation on strand a:

gH[a_][e_] := (e /. {ca → -ca, wa → -wa, ba → -ba, ua → -ua}) // Nua ca→a // Nwa ca→a // Nwa ua→a
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To show that the diagram is compatible with orientation reversal we have to show that the following

diagram

(G0){a}∪S (G0){a}∪S

Γ̃{a}∪S Γ̃{a}∪S

dHa

η η

gHa

is commutative. We can verify the diagram using Mathematica as follows. First we input an element ξ

of (G0){a}∪S in Mathematica using the command

ξ = [ω, Sum[lx,y bx cy + qx,y ux wy, {x, {a, S}}, {y, {a, S}}]]

Then we check the commutativity of the diagram via the command

(ξ // gH[a] // G0toΓ) ≡ (ξ // G0toΓ // dH[a])

Mathematica then returns True, as expected.

Next let us look at the strand doubling operation ∆i
j,k which replaces strand a by two of its parallel

copies labeled by j and k. In Aw it is the operation of replacing the skeleton strand i by two skeleton

strands j and k and summing over all ways of connecting arrow heads or arrow tails to strand j or strand

k. For instance

Correspondingly in U(g0) it is the doubling map ∆i
j,k, i.e. the homomorphism given by

∆i
j,k(xi) = xj + xk, xi ∈ g0,i.

We can implement ∆i
j,k in Mathematica as follows:

gΔ[i_, j_, k_][e_] := (e /. {ci → cj + ck, wi → wj + wk, bi → bj + bk, ui → uj + uk}) // CF

where we denote the subroutine by g∆[i, j, k]. In this case the doubling operation inW is NOT compat-

ible with the “naive” doubling operation in Lie algebras. Specifically, the following diagram

(G0){i}∪S (G0){j,k}∪S

Γ̃{i}∪S Γ̃{j,k}∪S

g∆i
j,k

η η

q∆i
j,k

is NOT commutative.



Chapter 6

The Fox-Milnor Condition

6.1 Ribbon Knots

We first recall some basic terminologies and refer the readers to [Kau87] for more details. A knot is

called ribbon if it can be written as the boundary of a 2-disk that is immersed into the 3-sphere S3 with

ribbon singularities. More precisely, if ι : D2 → S3 is the immersion and C is a connected component of

the singular set of ι, then ι−1(C) consists of a pair of closed intervals: one lies entirely in the interior of

D2 and one with endpoints on the boundary of D2. The following figure describes the situation locally.

Here the dashed lines indicate the preimages of the singularity. For instance the following knot is ribbon.

One sees that it can be written as the boundary of a 2-disk (the shaded part) with only ribbon singulari-

ties.

A knot is called (smoothly) slice if it is the boundary of a smoothly embedded 2-disk D2 in the 4-

dimensional disk D4. (Here the boundary of D4 is the 3-sphere S3, which contains our knot.) It is clear

that ribbon knots are slice because we can push the (ribbon) singularities into D4, thereby obtaining an

embedding of D2 into D4. However the reverse direction, known as the slice-ribbon conjecture, is one

of the most famous open problems in classical knot theory. Our goal in this section is to rederive the

Fox-Milnor condition using the framework of Γ-calculus.

Theorem (Fox-Milnor [Lic97]). If a knot K is slice, and ∆K(t) is the Alexander polynomial of K, then
there exists a Laurent polynomial f such that

∆K(t)
.
= f(t)f(t−1), (6.1)

75
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where .
= means equality up to multiplication by ±tn, n ∈ Z.

Notice that the Fox-Milnor condition gives us a condition on slice knots, and since the class of slice

knots contains ribbon knots, it cannot help resolve the slice-ribbon conjecture. In [GST10] the authors

gave several potential counter-examples to the slice-ribbon conjecture. One of them is the following

knot.

Our strategy to approach the slice-ribbon conjecture is first to give a characterization of ribbon knots in

terms of tangles and the closure operations described below. Then we need an invariant of tangle which

is well-behaved with respect to those closure operations. We argue that Γ-calculus is one example of

such an invariant (in fact the simplest of a series of invariants). In the remaining part of the paper we

will investigate the ribbon property in Γ-calculus. Although in the end we just obtain the Fox-Milnor

condition, our proof uses the characterization for ribbon knots (as opposed to slice knots), thus it has

the potential to answer the slice-ribbon conjecture when we generalize it in the context of a stronger

invariant (see [BN16a] for one such invariant).

Since in this thesis we are working with long knots, we say that a long knot K is ribbon if its closure

K̃ is ribbon. Long ribbon knots have the following characterization in terms of tangles. Consider a 2n-

component pure up-down tangle. Here pure means the permutation induced by the tangle is the identity

permutation and up-down means that the strands are oriented up and down alternately starting from

the first strand, where we label the strands from left to right from 1 to 2n.

There are two special closure operations called knot closure and tangle closure, denoted by κ and τ ,

respectively. The τ closure performs n stitching at the top, namely it stitches strand i to strand i + 1,

where i runs over all odd labels 1, 3, . . . , 2n − 1, which yields an n-component bottom tangle (a bottom
tangle means all the endpoints lie at the bottom). More precisely, the stitching sequence is given by

m1,2
1 �m3,4

3 � · · · �m2n−1,2n
2n−1 .

Or in the notations of Proposition we can express the stitching sequence in a matrix form1 3 . . . 2n− 1

2 4 . . . 2n

1 3 . . . 2n− 1

 .

where we stitch the strand with the label in the first row to the strand with label in the second row and

label the resulting strand with the third row.
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The κ closure performs a stitching at the bottom and a stitching at the top alternately, namely it

stitches strand i+ 1 to strand i, where i runs over the labels 1, 2, . . . , 2n− 1. Note that we do not stitch

strand 1 to strand 2n, so the result of a κ closure is a long knot. In this case the sequence of stitching

operations is

m2,1
2 �m3,2

3 � · · · �m2n,2n−1
2n ,

or in matrix form 2 3 . . . 2n

1 2 . . . 2n− 1

2 3 . . . 2n

 .

As an example, for the tangle on the left its τ closure is given as follows

and its κ closure is given by

Now let me prove the following proposition, inspired by ideas of Prof Bar-Natan (see also [Khe17]).

Proposition 6.1. A long knot K is ribbon if and only if there exists a 2n-component pure up-down tangle
T such that κ(T ) is the long knot K and τ(T ) is the trivial n-component bottom tangle, i.e. it bounds n
disjoint embedded half-disks in R2 as in the following figure.
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Proof. For the only if direction, we want to obtain a tangle presentation of a ribbon knot that satisfies

the condition of the propositions. Given a long ribbon knot, we first close it to obtain a knot. Note that a

ribbon knot can be presented in a special form, known as a ribbon presentation (see [Kaw96]). Namely,

every ribbon knot can be obtained from an embedding of a disjoint union of rings and strings between

consecutive rings

where we require that the rings are embedded trivially, i.e. each bounds a 2-disk, and we require that

the ends of the strings, which we denote by dots •, only lie on the boundaries of the disks. For instance

a ribbon presentation of a ribbon knot is

To obtain the ribbon knot, we simply “unzip” the strings to obtain

Now given a ribbon presentation of a ribbon knot, observe that if we can deform it into the following

form
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then the tangle inside the rectangle satisfies our requirements (here again dashed lines mean they can

be knotted in any manner). To see why, note that the τ closure of the tangle returns the upper halves of

the embedded disks without the strings, so we can deform the upper half disks to a trivial position (this

is because in the ribbon presentation the disks are embedded trivially). On the other hand, the κ closure

with the extra stitching of strand 1 to strand 2n is the same as unzipping the strings, which results in the

knot.

Therefore, it suffices to show that given any ribbon presentation, we can deform it to the above form.

For that, we need to make two cuts to the ribbon presentation, the bottom cut and the top cut. The

bottom cut is easy to perform. Namely, for each ring, we can pull the bottom part down below away

from interaction with any string simply by choosing a point on the bottom of a ring and perform a “finger

move”. Then we cut all the bottom parts.

For the top cut, we first need to deform the ribbon presentation as follows. We describe the method

for the example of a ribbon presentation given above, but it is representative of a general case. Our

strategy would be to move the dots along the strings, which will drag parts of the rings along in the

process. For our example, we first move the dot from the third ring along the string, which pulls along a

part of the third ring

When we get close to the end of the string and encounter a first dot on the second ring, we move both

dots along the second ring to the other dot on the second ring.

Then we pull all three dots along the remaining strings, which pull along parts of the second and the

third rings
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This procedure allows us to pull all the dots and the strings above all rings, then we can easily make the

top cut as follows.

Our required tangle is contained in the dashed rectangle. This completes the only if direction. (Note that

after the “pulling” procedure, the strings that connect the dots on top do not have any knotting. That

is why we can recover the knot by the stitching operations since stitching means connecting in the most

straightforward manner, without any knotting. In a sense the key of idea of the proof is to “convert” the

knotting of the strings into the knotting of the disks.)

For the if direction, we need to show that if a long knot K has a tangle presentation T satisfying

the condition given in the proposition, then K̃ is ribbon. Suppose that the tangle T is contained in the

rectangle as in the next figure.

Here we add the top caps to represent the τ closure and we also add the strings that connect them. We

also add the bottom cups. Note that unzipping the strings that connect the caps is the same as performing

the κ closure and the extra stitching of strand 1 to strand 2n, so we obtain the knot K̃. The tangle T
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together with the top caps form an embedding of n upper half disks. Now from assumption we can

deform the upper half disks to a trivial position. In the deformation process the strings will be knotted

and also intersect the interiors of the disks transversely. When the upper half disks are deformed to a

trivial position, we unzip the strings, and all the transversal intersections become ribbon singularities.

We therefore obtain a ribbon presentation of K̃ and therefore the long knot K is ribbon, as required.

Example 6.1. Let us look at a concrete example. Consider the following tangle [BN16a]

Taking the τ closure we obtain

which one can check to be the trivial bottom tangle. The tangle satisfies the condition of the proposition,

therefore it represents a ribbon knot. To see which one it is we look at the κ closure, whereas here we

also stitch strand 1 to strand 4 to obtain a closed knot

which one can deform into the following form
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In this form one easily sees that the knot is ribbon.

Remark 6.1. In [Hab06, Section 11.2] Prof Habiro has a similar result as ours. Although as far as I can

tell the method of proof is quite different.

6.2 Unitary Property

To obtain the Fox-Milnor condition (6.1) using the framework of Γ-calculus is not so straightforward. It

is not simply a matter of plug-in-and-check in Mathematica like we have done so far because we do not

know a formula for the function f . The main difficulty however is that ribbon knots are characterized in

terms of (usual) tangles, and the stitching operations in Γ-calculus does not distinguish (usual) tangles

from w-tangles. Our first task therefore is to find a certain property that can characterizes the image of

(usual) tangles in Γ-calculus, which we call a “unitary property” for reasons which will be clear below.

In this section I establish a “unitary property” for string links, which is sufficient for our purpose. First

let me prove a key topological fact with ideas inspired by Prof Bar-Natan.

Lemma 6.1. Every string link can be obtained as a partial closure of some braid β. More precisely, suppose
the braid β has the bottom endpoints labeled by a1, . . . , an and the top endpoints labeled by b1, . . . , bn, then
we obtain the string link by stitching bi to ai, where i = k, k + 1, . . . , n, and k is some integer such that
1 < k ≤ n, as in the next figure.

In other words, every string link can be obtained from a braid by stitching the right-most outgoing strand
with the right-most incoming strand successively finitely many times.

Proof. First we deform the string link to a Morse position. i.e. where we can decompose the string link

into elementary pieces consisting of crossings and cups and caps. If the string link contains no downward

arcs, then it is a braid and there is nothing to do. Otherwise, because each strand goes from bottom to

top, the cups and caps will occur consecutively in pairs, and each downward arc will occur between a
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pair of consecutive cup and cap. Our strategy will be to transform each downward arc into a stitching of

the right-most outgoing strand with the right-most incoming strand as follows.

Look at a particular downward arc which occurs between a pair of cup and cap. There will generally

be a number of other arcs which go either over or under the downward arc. By introducing new pairs of

consecutive cups and caps we can make sure that between a cup and a cap there is only one arc which

goes either over or under the downward arc.

So it suffices to consider the following cases

For the case where the arc goes over the downward arc, we create a “finger” at the cup and and a “finger”

at the cap and bring them to the right-most position going under the remaining strands and then pull

the downward arc to the right-most position as in the next figure.

Note that inside the dashed rectangle the strands go monotonically from bottom to top. This procedure

will turn a downward arc into a stitching of the right-most outgoing strand to the right-most incoming

strand and does not introduce any new downward arc. The case where there is an arc that goes under

the downward arc is similar, we just have to pull the cup and cap to the right going over the remaining

strands. We can repeatedly use the procedure to eliminate the downward arcs in the string link by

moving them to the right-most position. Eventually we obtain a partial closure of a braid, as the figure

given in the lemma.

Example 6.2. For a simple example we can transform the following string link as follows
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Let X be a finite set of labels. For a matrix A whose entries are rational functions in tx, x ∈ X, let

A∗ be At, the conjugate transpose of A, where conjugation means sending tx → t−1
x for all x ∈ X. Recall

also that for an n×n matrix M and a permutation ρ = (ρ1, ρ2, . . . , ρn) we let Mρ be the matrix obtained

by permuting the columns of M according to ρ, i.e. the jth column of Mρ is the ρjth column of M (see

(3.4)). Now I can prove the unitary property given in the next proposition.

Theorem 6.1 (Unitary Property). Let β be a string link and X = {a1, . . . , an} be a finite set of labels of
the bottom endpoints. Let ρ be the induced permutation. Then the bottom endpoints of β are labeled by
(a1, a2, . . . , an) and the top endpoints of β are labeled by (a1ρ, . . . , anρ) and suppose that the invariant of
β in Γ-calculus is

ϕ(β) =


ω a1 · · · an

a1

... M
an

 .

Then we have
(Mρ)∗ΩMρ = Ω(ρ),

and
ω
.
= ω det(Mρ),

where the matrix Ω is given by

Ω =


(1− ta1)−1 0 · · · 0

1 (1− ta2)−1 · · · 0
...

...
. . .

...
1 1 · · · (1− tan)−1


and Ω(ρ) is obtained from Ω by permuting the diagonal entries according to the permutation ρ, i.e.

Ω(ρ) =


(1− ta1ρ)−1 0 · · · 0

1 (1− ta2ρ)−1 · · · 0
...

...
. . .

...
1 1 · · · (1− tanρ)−1

 .

Remark 6.2. Before presenting the proof let us explain the name “unitary property”. In the case where

ρ is the identity matrix, i.e. pure string links, or when we identify all the variables tx, i.e. the Burau

representation, we obtain

M∗ΩM = Ω.

Taking the conjugate transpose of both sides we obtain

M∗Ω∗M = Ω∗.

Therefore if we let Ψ = iΩ− iΩ∗, then

M∗ΨM = Ψ.



CHAPTER 6. THE FOX-MILNOR CONDITION 85

Note that the matrix Ψ is Hermitian since

Ψ∗ = (iΩ− iΩ∗)∗ = iΩ− iΩ∗ = Ψ,

hence the matrix M is unitary with respect to the Hermitian form Ψ.

Proof. The general strategy of the proof is as follows. Lemma 6.1 suggests an “inductive procedure”,

namely we first show that the unitary property holds for braids and then we show that it still holds after

stitching the right-most outgoing strand with the right-most incoming strand.

To show the property for braids, we verify that it is true for crossings and is preserved under composi-

tion. Then the bulk of the proof is devoted to showing that the property still holds after stitching. To that

end, we decompose the stitching operation into a sequence of elementary row operations of matrices

and then it boils down to simple computations in matrix algebra. To streamline the proof, we separate

the matrix part and the scalar part.

The matrix part: Let us first check the crossings. Indeed one can verify easily that for R+
a,b we have(

1− t−1
a t−1

a

1 0

)(
(1− ta)−1 0

1 (1− tb)−1

)(
1− ta 1

ta 0

)
=

(
(1− tb)−1 0

1 (1− ta)−1

)
,

and for R−a,b we have(
0 1

ta 1− ta

)(
(1− tb)−1 0

1 (1− ta)−1

)(
0 t−1

a

1 1− t−1
a

)
=

(
(1− ta)−1 0

1 (1− tb)−1

)
.

The computation clearly extends to generators of the braid groups (extend by block identity matrix).

Next observe that the unitary property is invariant under composition of string links (or braids in partic-

ular). Indeed, consider two string links β1 and β2 with induced permutations ρ1 and ρ2, respectively:

ϕ(β1) =

(
ω1 aaaρ1

aaa Mρ1
1

)
and ϕ(β2) =

(
ω2 bbbρ2

bbb Mρ2
2

)

and suppose that we have

(Mρ1
1 )∗Ω(aaa)Mρ1

1 = Ω(aaaρ1) and (Mρ2
2 )∗Ω(bbb)Mρ2

2 = Ω(bbbρ2).

Recall that the result of composing β1 and β2 is

ϕ(β1 · β2) =

(
ω1ω2 xaaaρ1ρ2

yaaa Mρ1
1 Mρ2

2

)
tbbb→taaaρ1

.

Thus with tbbb → taaaρ1 we have

(Mρ1
1 Mρ2

2 )∗Ω(aaa)(Mρ1
1 Mρ2

2 ) = (Mρ2
2 )∗(Mρ1

1 )∗Ω(aaa)Mρ1
1 Mρ2

2

= (Mρ2
2 )∗Ω(aaaρ1)Mρ2

2

= (Mρ2
2 )∗Ω(bbb)Mρ2

2

= Ω(bbbρ2)
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= Ω(aaaρ1ρ2),

as required. So the property holds for the case of braids (compare with [BN14a]).

Now given a string link β with induced permutation ρ = (a1ρ, a2ρ, . . . , anρ) such that anρ 6= an and

suppose we want to stitch the right-most outgoing strand to the right-most incoming strand. Note that

by composing the top and bottom of β with appropriate permutation braids we can bring β to a standard

form where the induced permutation is (a1, a2, . . . , an−2, an, an−1), i.e. the transposition (an−1, an). We

then stitch strand an−1 to strand an and label the resulting strand an−1.

In the above figure we only depict the permutation of the string link in the rectangle, and again dashed

lines mean the strands can be knotted. As an example, for the following string link whose permutation is

depicted in the rectangle we can bring it to the above form by composing with appropriate permutation

braids.

Since we have shown unitarity for braids and composition, it suffices to consider the string link β with

the induced permutation ρ = (a1, a2, . . . , an−2, an−1, an). Let

ϕ(β) =


ω an−1 an S

an−1 α β θ

an γ δ ε

S φ ψ Ξ

 m
an−1,an
an−1−−−−−−→

 (1− γ)ω an−1 S

an−1 β + αδ
1−γ θ + αε

1−γ
S ψ + δφ

1−γ Ξ + φε
1−γ


tan→tan−1

,

where S = X \ {an−1, an}. Assume β satisfies the unitary property, for that we need to rearrange the
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matrix part as follows 
ω S an an−1

S Ξ ψ φ

an−1 θ β α

an ε δ γ

 .

Let us denote

M =

Ξ ψ φ

θ β α

ε δ γ

 .

Then the unitary statement is

M∗ΩM = Ω(ρ), (6.2)

where to simplify notation we put

Ω =

Ωn−2 000 000

111 (1− tan−1
)−1 0

111 1 (1− tan)−1

 ,

where

Ωn−2 =


(1− ta1)−1 0 · · · 0

1 (1− ta2)−1 · · · 0
...

...
. . .

...

1 1 · · · (1− tan−2)−1

 ,

and

Ω(ρ) =

Ωn−2 000 000

111 (1− tan)−1 0

111 1 (1− tan−1
)−1

 .

Here 111 denotes either a row or a column or a square matrix (the size of which depends on the context)

consists entirely of 1’s and similarly for 000. To show that the unitary property still holds after stitching

means we need to show that the following is true.(
Ξ∗ + ε∗φ∗

1−γ∗ θ∗ + α∗ε∗

1−γ∗

ψ∗ + δ∗φ∗

1−γ∗ β∗ + α∗δ∗

1−γ∗

)
Ωn−1

(
Ξ + φε

1−γ ψ + δφ
1−γ

θ + αε
1−γ β + αδ

1−γ

)
= Ωn−1,

For that we first decompose the stitching operation into a sequence of elementary operations as follows:Ξ ψ φ

θ β α

ε δ γ

 −→
Ξ ψ φ

θ β α

ε δ γ − 1

 −→
 Ξ ψ φ

θ β α
ε

γ−1
δ

γ−1 1

 −→
Ξ + φε

1−γ ψ + δφ
1−γ 000

θ + αε
1−γ β + αδ

1−γ 0
ε

γ−1
δ

γ−1 1

 .

Note that except for the first one, all the operations are simply elementary row operations. Now under

stitching, we identify tan−1
and tan . In what follows, we set tan to be tan−1

. Then Ω|tan→tan−1
=

Ω(ρ)|tan→tan−1
and again to avoid cumbersome notations we will denote both of them by Ω. We then
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write (6.2) as
Ξ∗ θ∗ ε∗

ψ∗ β∗ δ∗

φ∗ α∗ γ∗ − 1

+

000 000 000

000 0 0

000 0 1


Ω


Ξ ψ φ

θ β α

ε δ γ − 1

+

000 000 000

000 0 0

000 0 1


 = Ω. (6.3)

Observe that Ξ∗ θ∗ ε∗

ψ∗ β∗ δ∗

φ∗ α∗ γ∗ − 1

Ω

000 000 000

000 0 0

000 0 1

 =


000 000 ε∗

1−tan−1

000 0 δ∗

1−tan−1

000 0 γ∗−1
1−tan−1


and 000 000 000

000 0 0

000 0 1

Ω

Ξ ψ φ

θ β α

ε δ γ − 1



=


000 000 000

000 0 0

θ + 〈Ξ〉+ ε
1−tan−1

β + 〈ψ〉+ δ
1−tan−1

α+ 〈φ〉+ γ−1
1−tan−1

 .

(Recall the notation 〈·〉 from Proposition 3.4.) We also have

000 000 000

000 0 0

000 0 1

Ω

000 000 000

000 0 0

000 0 1

 =


000 000 000

000 0 0

000 0 1
1−tan−1

 .

Therefore (6.3) becomes

Ξ∗ θ∗ ε∗

ψ∗ β∗ δ∗

φ∗ α∗ γ∗ − 1

Ω

Ξ ψ φ

θ β α

ε δ γ − 1

 =


Ωn−2 000 ε∗

−1+tan−1

111 (1− tan−1)−1 δ∗

−1+tan−1

111− θ − 〈Ξ〉+ ε
−1+tan−1

1− β − 〈ψ〉+ δ
−1+tan−1

−2+α+γ+〈φ〉−(α+〈φ〉)tan−1
+γ∗

−1+tan−1

 . (6.4)

By Proposition 3.4 we can rewrite the above as

Ξ∗ θ∗ ε∗

ψ∗ β∗ δ∗

φ∗ α∗ γ∗ − 1

Ω

Ξ ψ φ

θ β α

ε δ γ − 1

 =


Ωn−2 000 ε∗

−1+tan−1

111 (1− tan−1
)−1 δ∗

−1+tan−1
tan−1

ε

−1+tan−1

tan−1
δ

−1+tan−1

−1+γ∗−(1−γ)tan−1

−1+tan−1

 . (6.5)

Consider the left hand side of the above identity, we can obtain the stitching formula by a sequence of

elementary row and column operations. By employing elementary matrices, we can rewrite the left hand
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side as Ξ∗ + ε∗φ∗

1−γ∗ θ∗ + α∗ε∗

1−γ∗
ε∗

γ∗−1

ψ∗ + δ∗φ∗

1−γ∗ β∗ + α∗δ∗

1−γ∗
δ∗

γ∗−1

000 0 1

 Ω̃

Ξ + φε
1−γ ψ + δφ

1−γ 000

θ + αε
1−γ β + αδ

1−γ 0
ε

γ−1
δ

γ−1 1

 ,

where

Ω̃ =

 I 000 000

000 1 0

φ∗ α∗ 1


I 000 000

000 1 0

000 0 γ∗ − 1

Ω

I 000 000

000 1 0

000 0 γ − 1


I 000 φ

000 1 α

000 0 1



=

Ωn−2 000 •
111 (1− tan−1

)−1 •
• • •

 .

Here a • denotes an entry we do not care about. Notice that the row and column operations only affect

the last row and the last column of Ω. Finally, we apply column operations to the right-most matrix and

row operations to the left-most matrix to obtainΞ∗ + ε∗φ∗

1−γ∗ θ∗ + α∗ε∗

1−γ∗ 000

ψ∗ + δ∗φ∗

1−γ∗ β∗ + α∗δ∗

1−γ∗ 0

000 0 1

 Ω̃

Ξ + φε
1−γ ψ + δφ

1−γ 000

θ + αε
1−γ β + αδ

1−γ 0

000 0 1

 .

We can encode these operations as multiplying with the matrix I 000 000

000 1 0

− ε
γ−1 − δ

γ−1 1


on the right and its conjugate transpose I 000 − ε∗

γ∗−1

000 1 − δ∗

γ∗−1

000 0 1


on the left. Therefore the right hand side of (6.5) becomes

I 000 − ε∗

γ∗−1

000 1 − δ∗

γ∗−1

000 0 1




Ωn−2 000 ε∗

−1+tan−1

111 (1− tan−1
)−1 δ∗

−1+tan−1
tan−1

ε

−1+tan−1

tan−1
δ

−1+tan−1

−1+γ∗−(1−γ)tan−1

−1+tan−1


 I 000 000

000 1 0

− ε
γ−1 − δ

γ−1 1

 .

For our purpose we only need to look at the first n − 1 rows and the first n − 1 columns of the above

matrix. One can check by simple algebra that the first n − 1 rows and the first n − 1 columns stay
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unchanged. In summary, we obtain the following identityΞ∗ + ε∗φ∗

1−γ∗ θ∗ + α∗ε∗

1−γ∗ 000

ψ∗ + δ∗φ∗

1−γ∗ β∗ + α∗δ∗

1−γ∗ 0

000 0 1


Ωn−2 000 •

111 (1− tan−1
)−1 •

• • •


Ξ + φε

1−γ ψ + δφ
1−γ 000

θ + αε
1−γ β + αδ

1−γ 0

000 0 1

 =

Ωn−2 000 •
111 (1− tan−1)−1 •
• • •

 .

It then follows that (
Ξ∗ + ε∗φ∗

1−γ∗ θ∗ + α∗ε∗

1−γ∗

ψ∗ + δ∗φ∗

1−γ∗ β∗ + α∗δ∗

1−γ∗

)
Ωn−1

(
Ξ + φε

1−γ ψ + δφ
1−γ

θ + αε
1−γ β + αδ

1−γ

)
= Ωn−1,

which is precisely the unitary statement after stitching, and the unitary property for the matrix part is

proved.

The scalar part: Next let us show the unitary property for the scalar part. The initial setup will be

exactly the same as in the proof for the matrix part. Again we first verify the crossings. For the positive

crossing R+
a,b:

1 · det

(
1− ta 1

ta 0

)
= −ta

.
= 1,

and for the negative crossing R−a,b:

1 · det

(
0 t−1

a

1 1− t−1
a

)
= −t−1

a
.
= 1,

as required. It is easy to verify that the property is invariant under disjoint union (the determinant

of the direct sum of two matrices is the the product of the determinants) and under composition (the

determinant of the product of two square matrices is the product of the determinants). So again we only

need to check the property under stitching strand an−1 to strand an. Using the same notation as in the

proof for the matrix part, we let

M =

Ξ ψ φ

θ β α

ε δ γ

 ,

and M ′ is the matrix part after stitching strand an−1 to strand an and labeling the resulting strand an−1

M ′ =

(
Ξ + φε

1−γ ψ + δφ
1−γ

θ + αε
1−γ β + αδ

1−γ

)
tan→tan−1

.

Suppose that we have

ω
.
= ω det(M). (6.6)
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After stitching strand an−1 to strand an we want to show that

(1− γ)ω
∣∣
tan→tan−1

.
= (1− γ)ω det(M ′)

∣∣
tan→tan−1

.

Again to simplify notation we assume tan → tan−1
from now on. Using (6.6) we can rewrite the above

as

(1− γ)ω det(M)
.
= (1− γ)ω det(M ′).

Since ω 6= 0 we can divide both sides by ω to get

(1− γ) det(M)
.
= (1− γ) det(M ′). (6.7)

Now from the unitary property of M ′

(M ′)∗Ωn−1M
′ = Ωn−1,

taking the determinant of both sides we obtain

det(M ′) det(M ′) = 1.

Thus (6.7) becomes

det(M ′) det(M)
.
=

1− γ
1− γ

.

It follows that we just need to prove the above identity. We see that it only involves the matrix part, so

we start with the unitary property for the matrix part:

M∗

Ωn−2 000 000

111 (1− tan−1)−1 0

111 1 (1− tan−1)−1

M =

Ωn−2 000 000

111 (1− tan−1)−1 0

111 1 (1− tan−1)−1

 .

We can rewrite the above as
Ξ∗ θ∗ ε∗

ψ∗ β∗ δ∗

φ∗ α∗ γ∗ − 1

+

000 000 000

000 0 0

000 0 1


Ω

Ξ ψ φ

θ β α

ε δ γ

 = Ω. (6.8)

We have000 000 000

000 0 0

000 0 1

Ω

Ξ ψ φ

θ β α

ε δ γ

 =


000 000 000

000 0 0

θ + 〈Ξ〉+ ε
1−tan−1

β + 〈ψ〉+ δ
1−tan−1

α+ 〈φ〉+ γ
1−tan−1

 .

Then (6.8) becomesΞ∗ θ∗ ε∗

ψ∗ β∗ δ∗

φ∗ α∗ γ∗ − 1

Ω

Ξ ψ φ

θ β α

ε δ γ
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=


Ωn−2 000 000

111 (1− tan−1
)−1 0

111− θ − 〈Ξ〉+ ε
−1+tan−1

1− β − 〈ψ〉+ δ
−1+tan−1

−α− 〈φ〉+ 1−γ
1−tan−1



=


Ωn−2 000 000

111 (1− tan−1
)−1 0

tan−1
ε

−1+tan−1

tan−1
δ

−1+tan−1

tan−1
(1−γ)

1−tan−1

 ,

where we use Proposition 3.4. Now for the left hand side, we can perform column operations via

elementary matrices to get

Ξ∗ + ε∗φ∗

1−γ∗ θ∗ + α∗ε∗

1−γ∗
ε∗

γ∗−1

ψ∗ + δ∗φ∗

1−γ∗ β∗ + α∗δ∗

1−γ∗
δ∗

γ∗−1

000 0 1


 I 000 000

000 1 0

φ∗ α∗ 1


I 000 000

000 1 0

000 0 γ∗ − 1

ΩM

=


Ωn−2 000 000

111 (1− tan−1
)−1 0

tan−1
ε

−1+tan−1

tan−1
δ

−1+tan−1

tan−1
(1−γ)

1−tan−1

 .

Finally taking the determinant of both sides we obtain

det(M ′)(γ − 1) det(M) = tn−1(1− γ).

Thus

det(M ′) det(M)
.
=

1− γ
1− γ

,

which completes the proof.

Remark 6.3. As a consequence of the unitary property for the scalar part, for the case of long knots, the

matrix part is 1 and we have

ω
.
= ω,

which is the classic property that the Alexander polynomial stays unchanged under the transformation

t→ t−1.

6.3 The Fox-Milnor Condition

Now I will prove the Fox-Milnor condition using the framework of Γ-calculus.

Theorem. If a long knot K is ribbon, then the Alexander polynomial of K̃, ∆K(t) (which is the same as
the scalar part of K in Γ-calculus, see Proposition 3.8) satisfies

∆K̃(t)
.
= f(t)f(t−1),

where .
= means equality up to multiplication by ±tn, n ∈ Z and f is a Laurent polynomial.

Proof. Our strategy is to express Proposition 6.1 in the language of Γ-calculus. To that end, consider a

pure up-down tangle T with strands labeled by 1, 2, . . . , 2n, which satisfies the condition of Proposition
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6.1. We let oddoddodd denote the vector (1, 3, . . . , 2n− 1) of labels and eveneveneven denote the vector (2, 4, . . . , 2n) of

labels. For convenience, we write the invariant ϕ(T ) in Γ-calculus as ω oddoddodd eveneveneven

eveneveneven γ δ

oddoddodd α β


where each α, β, γ, δ is an n× n matrix. For the τ closure, we stitch the odd strands to the even strands

and label the resulting strands odd. The stitching instruction is1 3 . . . 2n− 1

2 4 . . . 2n

1 3 . . . 2n− 1

 .

Then it follows from Proposition 3.1 that ω oddoddodd eveneveneven

eveneveneven γ δ

oddoddodd α β

 τ=modd
oddodd,eveneveneven
oddoddodd−−−−−−−−→

(
ω det(I − γ) oddoddodd

oddoddodd β + α(I − γ)−1δ

)
teveneveneven→toddoddodd

.

Since the τ closure yields a trivial tangle we have ω det(I − γ) = 1 and β + α(I − γ)−1δ = I. Now for

the κ closure, the stitching instructions are specified by stitching the strands labeled by (1, 2, . . . , 2n− 1)

to the strands labeled by (2, 3, . . . , 2n), in that order. The stitching instruction is2 3 . . . 2n

1 2 . . . 2n− 1

2 3 . . . 2n

 .

After we perform all the stitchings, the end result is the original long knot K. Note that according to the

stitching formula we make the change of variables tx → t2n for x = 1, . . . , 2n. To simplify notation we

simply write t instead of t2n. From the stitching formula in Proposition 3.1 the scalar part is given by

ω det(I −N)
∣∣
tx→t

,

where N is the submatrix of the matrix part of ϕ(T ) specified by
2 · · · 2n

1

N...

2n− 1

 .

On the other hand from Proposition 3.8 we know that the scalar part is the Alexander polynomial of the

knot K̃, i.e.

∆K̃(t) = ω det(I −N)
∣∣
tx→t

. (6.9)
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Now it is a simple exercise in linear algebra that

det(I −N) = det(P −M), (6.10)

where M is the matrix part of ϕ(T ) 
1 · · · 2n

1

M...

2n

 ,

and P is the matrix given by

P =



1 2 · · · 2n

1

000 I2
...

2n 0 000


.

To see why (6.10) is true, observe that if we replace the last row of P −M by the the sum of all the rows,

which does not change the value of the determinant, then we obtain the row (−1, 0, . . . , 0) by Lemma

3.4. We then compute the determinant by expansion along the last row and the result follows.

Now it is useful to rearrange the rows and columns of P −M into oddoddodd and eveneveneven, which only changes

the determinant up to ±1, in order to relate to the τ closure:
• oddoddodd eveneveneven

oddoddodd −α I − β

eveneveneven

(
000 In−1

0 000

)
− γ −δ

 .

Then by Lemma 3.2 we have

det

 α β − I

γ −

(
000 In−1

0 000

)
δ

 = det

(
α+ (I − β)δ−1

(
γ −

(
000 In−1

0 000

)))
det(δ).

From β + α(I − γ)−1δ = I we get

α(I − γ)−1δ = I − β.

Therefore

det

(
α+ (I − β)δ−1

(
γ −

(
000 In−1

0 000

)))
det(δ)

= det

(
α+ α(I − γ)−1

(
γ −

(
000 In−1

0 000

)))
det(δ)

= det(α) det

(
I + (I − γ)−1

(
γ −

(
000 In−1

0 000

)))
det(δ)
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= det(α) det[(I − γ)−1] det

(
I −

(
000 In−1

0 000

))
det(δ)

=
det(α) det(δ)

det(I − γ)

= ω det(α) det(δ),

where we use ω det(I − γ) = 1 in the last equality. From (6.9) it follows that

∆K̃(t)
.
= ω det(α)ω det(δ)

∣∣
tx→t

. (6.11)

To finish off, we will employ the unitary property of ϕ(T ). But since we only have the unitary property

for string links, we first need to reverse the orientations of all the even strands of T . The orientation

reversal formula (Proposition 3.10) yields ω eveneveneven oddoddodd

eveneveneven δ γ

oddoddodd β α

 dHeveneveneven

−−−−−→

 ω det(δ) eveneveneven oddoddodd

eveneveneven δ−1 δ−1γ

oddoddodd −βδ−1 α− βδ−1γ


teveneveneven→t−1

eveneveneven

.

Note that the orientation reversal operation takes value in Γ̃. However here we can safely ignore the σ

part because we consider ω up to multiplication of monomials in tx. Now the unitary property of the

scalar part tells us that

ω det(δ)
∣∣∣
toddoddodd→t−1

oddoddodd

.
= ω det(δ) det

(
α− βδ−1γ −βδ−1

δ−1γ δ−1

)∣∣∣∣∣
teveneveneven→t−1

eveneveneven

.

Taking teveneveneven → t−1
eveneveneven in both sides we obtain

ω det(δ)
.
= ω det(δ) det

(
α− βδ−1γ −βδ−1

δ−1γ δ−1

)
= ω det(δ) det(α− βδ−1γ + βδ−1δδ−1γ) det(δ−1)

= ω det(α).

Again we use Lemma 3.2 in the second equality. Then setting all tx to t, (6.11) becomes

∆K̃(t)
.
= ω det(δ)ω det(δ)

.
= ω det(α)ω det(α),

which is precisely the Fox-Milnor condition.

Note that in our proof we can choose the function f to be ω det(δ) or ω det(α). In the first case f is

the scalar part of the tangle obtained by reversing the orientations of the even strands of T , and in the

second case f is the scalar part of the tangle obtained by reversing the orientations of the odd strands of

T (with the relevant tx → t−1
x ). By Proposition 3.5 we see that f is a Laurent polynomial.



Chapter 7

Extension to w-Links

In this chapter we present a method to extend Γ-calculus to links. This chapter is independent of other

chapters and can be skipped on first reading. It is expository and mainly follows ideas of Prof Bar-Natan.

The idea of extending Γ-calculus to links have appeared in [Hal16, BNS13].

7.1 The Trace Map

In this section I would like to extend our invariant to links. So far our invariant in Γ-calculus only works

for tangles and long knots, since we do not allow closed components. Notice that our stitching formula

involves division by 1 − γ, and it only makes sense when γ is an off-diagonal term. In other words, we

can only stitch strands with distinct labels. When we try to stitch strands of the same label, we may

encounter division by zero. Nevertheless, the formula for the scalar part ω only requires multiplication

by 1 − γ and so we expect to be able to extend it to links, or more precisely long w-links, i.e. w-links

with only one open component. (More precisely, a long w-link diagram is a smooth general position

immersion of an interval and a finite collection of circles where the set of double points are divided into

positive crossings, negative crossings, and virtual crossings. Two long w-link diagrams are equivalent if

they are related by the moves specified in Section 2.2.) The matrix part is no longer well-defined for

links. For instance, if a tangle contains a trivial open component, then to stitch the component to itself

we would have to divide by 1− 1 = 0.

As a first step, we need to describe closed components within the framework of meta-monoids. Let

Wcl
X∪{c} be the collection of w-tangles whose components are labeled by X ∪{c} with exactly one closed

component labeled by c. Note that we cannot obtain Wcl
X∪{c} from crossings using the meta-monoid

operations because we cannot stitch the same strand to itself. Let WX∪{c} be the usual collection of

w-tangles (no closed components) whose components are labeled by X ∪{c}. Then we have a trace map

trc :WX∪{c} →Wcl
X∪{c}

given simply by closing the component c in a trivial manner (i.e. no crossings created except for virtual

crossings). To proceed I will prove the following key topological result suggested by Prof Bar-Natan.

Proposition 7.1. Two w-tangles T1 and T2 in WX∪{c} have equivalent images in Wcl
X∪{c} under the map

trc if and only if there is a w-tangle T ∈ WX∪{a,b}, where a and b are arbitrary labels and {a, b} ∩X = ∅,

96
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such that T1 = ma,b
c (T ) and T2 = mb,a

c (T ).

Proof. Note that it suffices to just look at the component labeled c. The if direction is quite clear from

the following diagram.

Now for the only if direction, let T1 and T2 have equivalent images under the trace map. We can view

the image as a closed component c with two beads on it that represent the two positions where we take

the trace and two strands that connect the beads to a fixed base as in the following figure (here again

dashed line means it can be knotted).

For each position, to take the trace, we unzip the strand, and then cap off the ends.

Then to find a tangle T such that T1 = ma,b
c (T ) and T2 = mb,a

c (T ), we simply unzip the two strands to

obtain a tangle T with two components a and b.

It is straightforward to check that T satisfies our requirement.
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From the above discussion a map (or an invariant) Ω on WX∪{c} will descend to a map on Wcl
X∪{c}

if it satisfies the condition

Ω(ma,b
c (T )) = Ω(mb,a

c (T ))

for all w-tangles T ∈ WX∪{a,b}. In general we would want to include links with more than one closed

component, and the above discussion can be generalized in a straightforward manner. For a vector

ccc = (c1, c2, . . . , cn) letWcl
X∪{ccc} be the collection of w-tangles whose components labeled by c1, . . . , cn are

closed. We also have a trace map
trccc :WX∪{ccc} →Wcl

X∪{ccc},

obtained by closing the components c1, . . . , cn in a trivial manner and an invariant Ω on WX∪{ccc} will

descend to an invariant onWcl
X∪{ccc} if it fulfills the condition

Ω(maaa,bbb
ccc (T )) = Ω(mbbb,aaa

ccc (T ))

for two vectors aaa, bbb such that ai 6= bj , and T is a w-tangle in WX∪{aaa,bbb}. Now I can define the trace map
in Γ-calculus.

Proposition 7.2 (The Trace Map). Let T be a w-tangle inWX∪{ccc}, then the following composition of maps,
which we denote by Ωccc

T
ϕ−→

 ω ccc S

ccc α θ

S φ Ξ

 trccc−−→ ω det(I − α)

yields an invariant onWcl
X∪{ccc}. For an element L ∈ Wcl

X∪{ccc}, we denote its image under Ωccc by ωL.

Proof. We just have to check that

Ωccc(m
aaa,bbb
ccc (T1)) = Ωccc(m

bbb,aaa
ccc (T1)),

or more specifically

trccc(m
aaa,bbb
ccc (ϕ(T1))) = trccc(m

bbb,aaa
ccc (ϕ(T1)))

for all w-tangles T1 ∈ WX∪{aaa,bbb}. Suppose that

ϕ(T1) =


ω aaa bbb S

aaa α β θ

bbb γ δ ε

S φ ψ Ξ

 .

Then maaa,bbb
ccc gives  det(I − γ)ω ccc S

ccc β + α(I − γ)−1δ θ + α(I − γ)−1ε

S ψ + φ(I − γ)−1δ Ξ + φ(I − γ)−1ε


taaa,tbbb→tccc

.

Taking trccc one obtains

det(I − β − α(I − γ)−1δ) det(I − γ)ω
∣∣
taaa,tbbb→tccc

.
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Now the other stitching mbbb,aaa
ccc yields det(I − β)ω ccc S

ccc γ + δ(I − β)−1α ε+ δ(I − β)−1θ

S φ+ ψ(I − β)−1α Xi+ ψ(I − β)−1θ


taaa,tbbb→tccc

.

Taking trccc one obtains

det(I − γ − δ(I − β)−1α) det(I − β)ω
∣∣
taaa,tbbb→tccc

.

Finally we invoke Lemma 3.2 and obverse that

det

(
I − β α

δ I − γ

)
= det

(
I − γ δ

α I − β

)
,

which completes the proof.

Remark 7.1. Notice that the trace map agrees with the scalar part of the stitching formula in Proposition

6.1 when we allow ai = bi. The matrix part is no longer well-defined because the matrix I − γ may not

always be invertible.

7.2 The Alexander-Conway Skein Relation

In this section I derive the Alexander-Conway skein relation for long w-links. First of all let us recall the

notion of w-braids (see [BND16] for more details). Let wBn be the group generated by σi, 1 ≤ i ≤ n− 1

and si, 1 ≤ i ≤ n− 1, subject to the following relations

(a) (permutation relations) s2
i = 1, sisi+1si = si+1sisi+1 and if |i− j| > 1 then sisj = sjsi,

(b) (braid relations) σiσi+1σi = σi+1σiσi+1, and if |i− j| > 1 then σiσj = σjσi,

(c) (mixed relations) siσ±1
i+1si = si+1σ

±1
i si+1, and if |i− j| > 1 then siσj = σjsi.

(d) (OC) σiσi+1si = si+1σiσi+1.

We can visualize the generators of wBn as follows.

An element of wBn is called a w-braid on n strands. An example of a w-braid is given in the next figure.
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For a topological interpretation of w-braids as “the group of flying rings”, see [BND16] and references

therein [Gol81, Sat00, BH08]. We can extend the Burau representation to wBn simply as follows

σi 7→

(
1− t 1

t 0

)
; σ−1

i 7→

(
0 t−1

1 1− t−1

)
; si 7→

(
0 1

1 0

)
.

Given a w-braid, its Burau representation agrees with the matrix part of Γ-calculus, up to permutation

of the columns, see Proposition 3.7.

I have the following analog of Alexander Theorem (see [KT08]).

Proposition 7.3. Every long w-link can be expressed as a partial closure, except the first strand, of a w-
braid. More precisely, suppose the w-braid β has the bottom endpoints labeled by a1, . . . , an and the top
endpoints labeled by b1, . . . , bn, then we obtain the long w-link by stitching bi to ai, where i = 2, . . . , n, as
in the next figure.

Proof. When we allow virtual crossings, the proof simplifies greatly. Namely we just need to decompose

the long w-link into a disjoint union of crossings, put all the crossings in a row and then stitch them. As

an example, let us look at the long trefoil.

Putting all the crossings of the long trefoil horizontally and the stitching the strands appropriately we

obtain the desired form.
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The w-braid is enclosed in the dashed rectangle.

For a long w-link L, let

∆L(t) = t−w(L)/2ωL(t),

where ωL(t) is the invariant as defined in Proposition 7.2 (we identify all the variables ti to t) and

w(L) =
∑

crossings

±1,

with +1 for a positive crossing and −1 for a negative crossing. I record here a simple property of ∆L.

Proposition 7.4. Let L be a long w-link and suppose L contains a closed trivial component, i.e. bounds an
embedded 2-disk that is disjoint from the rest of L. Then

∆L(t) = 0.

Proof. Suppose the closed component is labeled c. The link L can be obtained by closing a tangle of the

form T t Uc, where Uc denotes the trivial strand.

Then the matrix part of ϕ(T ) will contain a row of zeros except for a 1 occurring at position (c, c). From

Proposition 7.2 we observe that in this case det(I − α) = det(1 − 1) = 0 (in this case α denotes the

(c, c)-entry). So the invariant vanishes, as required.

Finally I will prove the Alexander-Conway skein relation.



CHAPTER 7. EXTENSION TO W-LINKS 102

Proposition 7.5 (Alexander-Conway Skein Relation). Let L+, L− and L0 be three long w-links which are
identical except at a neighborhood of a crossing where they are given by,

then we have
∆L+(t)−∆L−(t) = (t−1/2 − t1/2)∆L0(t). (7.1)

Proof. First of all we prove the following special case L+ = β̂σn−1, L− = β̂σ−1
n−1, L0 = β̂. Here β is a

w-braid and σn−1 is a standard generator of the braid group, n is the number of strands, and ̂ denotes

the closure as described in Proposition 7.3. Observe that

w(L+) = w(L0) + 1, w(L−) = w(L0)− 1.

Thus the skein relation becomes

t−1/2ωL+(t)− t1/2ωL−(t) = (t−1/2 − t1/2)ωL0(t). (7.2)

From Proposition 7.2 we have

ωL+
(t) = det([I − βσn−1]11), ωL−(t) = det([I − βσ−1

n−1]11), ωL0
= det([I − β]11),

where we identify the braid with its Burau representation by abuse of notations. Let

β =

 M1 φ1 ψ1

θ1 a b

ε1 c d

 ,

where M1 is an (n− 2)× (n− 2) matrix, φ1, ψ1 are column vectors and θ1, ε1 are row vectors. Then

βσn−1 =

 M1 φ1 ψ1

θ1 a b

ε1 c d


 I 000 000

000 1− t 1

000 t 0

 =

 M1 (1− t)φ1 + tψ1 φ1

θ1 (1− t)a+ tb a

ε1 (1− t)c+ td c

 ,

and

βσ−1
n−1 =

 M1 φ1 ψ1

θ1 a b

ε1 c d


 I 000 000

000 0 t−1

000 1 1− t−1

 =

 M1 ψ1 t−1φ1 + (1− t−1)ψ1

θ1 b t−1a+ (1− t−1)b

ε1 d t−1c+ (1− t−1)d

 .

Removing the first column and the first row (correspondingly, we remove the subscript 1 in the notations)
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we can rewrite (7.2) as

t−1/2 det

I −M −(1− t)φ− tψ −φ
−θ 1− (1− t)a− tb −a
−ε −(1− t)c− td 1− c

− t1/2 det

I −M −ψ −t−1φ− (1− t−1)ψ

−θ 1− b −t−1a− (1− t−1)b

−ε −d 1− t−1c− (1− t−1)d



= (t−1/2 − t1/2) det

I −M −φ −ψ
−θ 1− a −b
−ε −c 1− d

 .

Now for the first matrix, multiply the third column with (1− t) and subtract it from the second column

we obtain

t−1/2 det

I −M −tψ −φ
−θ 1− tb −a
−ε −1 + t(1− d) 1− c



= t−1/2 det

I −M −tψ −φ
−θ −tb −a
−ε t(1− d) 1− c

+ t−1/2 det

I −M 000 −φ
−θ 1 −a
−ε −1 1− c



= t1/2 det

I −M −ψ −φ
−θ −b −a
−ε 1− d 1− c

+ t−1/2 det

I −M 000 −φ
−θ 1 −a
−ε −1 1− c



= −t1/2 det

I −M −φ −ψ
−θ 1− a −b
−ε −c 1− d

− t1/2 det

I −M 000 −ψ
−θ −1 −b
−ε 1 1− d



+ t−1/2 det

I −M 000 −φ
−θ 1 −a
−ε −1 1− c

 .

Similarly for the second matrix, multiply the second column with (1− t−1) and subtract it from the third

column we have

t1/2 det

I −M −ψ −t−1φ

−θ 1− b −1 + t−1(1− a)

−ε −d 1− t−1c



= t1/2 det

I −M −ψ −t−1φ

−θ 1− b t−1(1− a)

−ε −d −t−1c

+ t1/2 det

I −M −ψ 000

−θ 1− b −1

−ε −d 1



= t−1/2 det

I −M −ψ −φ
−θ 1− b 1− a
−ε −d −c

+ t−1/2 det

I −M −ψ −000

−θ 1− b −1

−ε −d 1



= −t−1/2 det

I −M −φ −ψ
−θ 1− a −b
−ε −c 1− d

− t−1/2 det

I −M −φ 000

−θ 1− a 1

−ε −c −1
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+ t1/2 det

I −M −ψ 000

−θ 1− b −1

−ε −d 1

 .

Subtracting the above identities give us the skein relation.

Finally we show that a general case can be reduced to the special case as follows. Given a long w-link

L+, we first express it as the partial closure of a braid β1σiβ2. As a first step, observe that σi can be

written as a conjugate of σn−1 (simply pulling the crossing σi to the right-most position. Thus we can

assume that L+ is the partial closure of α1σn−1α2.

Now to proceed we can push α2 along the closure to the bottom of α1 and then move the open compo-

nent to the left.

The end result now is the partial closure of a w-braid of the form βσn−1, as required.

7.3 Odds and Ends

As we have mentioned our work is just the beginning of a long-term project. There are many potentially

interesting directions to be explored. We present a few of these directions below.

• General “unitary property”. So far we have only proven the unitary property for string links.

The general unitary property for tangles is more involved. A unitary property for tangles should

characterize the image of (usual) tangles in Γ-calculus. We describe one strategy to accomplish this

below, although we suspect that one should be able to arrive at the conclusion by much simpler
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means. Our underlying technical theorem is the commutativity of the following diagram (see

[BND14]):
sKTG wTF

Au Asw
Zu

a

Zw

α

(7.3)

To understand the terms and maps in the commutative diagram would require a substantial

amount of background. So we can only give a very rough description. The space sKTG con-

sists of knotted trivalent graphs, i.e. tangles with trivalent vertices; the space wTF consists of

w-tangled foams, i.e. w-tangles with trivalent vertices; Au is the space of chord diagrams and Asw

is the space of arrow diagrams. The map a includes (usual) tangles into w-tangles; the map α

sends a chord diagram to all ways of orienting the chord, namely

tij 7→ aij + aji;

and Zu and Zw are the corresponding homomorphic expansions. It is important to point out that

the image of a vertex in Asw under Zw gives us a solution to the Kashiwara-Vergne problems.

It is advantageous to work in G0 because it is simpler than Asw and all the formulas are readily

available. We can solve for a solution of a vertex explicitly in G0 using Mathematica. Now to state

the unitary property we need to introduce an involution θ of g0 given by

b 7→ −b, c 7→ −c, u 7→ w, w 7→ u.

Recall that

Tg0(aij + aji) = bicj + uiwj + bjci + ujwi.

We have

θ(bicj + uiwj + bjci + ujwi) = bicj + wiuj + bicj + uiwj .

In other words, θ preserves the image of a chord under α. It follows from the commutative diagram

(7.3) that for an element ζ ∈ sKTG its image ζ � a � Zw � Tg0 is invariant under θ.

Given a (usual) bottom tangle T with 2n endpoints, we first split the endpoints in half and desig-

nate one half as the bottom and the other half as the top. To convert T to an element of sKTG we

pick a canonical “parenthesization” of the bottom endpoints and the top endpoints, i.e. a way of

grouping the endpoints together. Then we can compose the bottom and the top of the tangle with

binary trees Vb and Vt according to the parenthesization. From the above discussion we have

Theorem 7.1 (General Unitary Property). The element VbTVt is invariant under θ.

For the case of string links we claim that the general unitary property reduces to Theorem 6.1. It

is interesting to express the general unitary property explicitly in the language of Γ-calculus. Then

it might be possible to prove the property using more elementary means.

• Alexander recovery. Another goal of our work is to convince the readers that the language of

Γ-calculus provides an easily accessible way to study the Alexander polynomial, particularly in

terms of computer implementation. We have recovered several classical properties of the Alexan-

der polynomial in this thesis but there are more to be explored. Another particularly interesting



CHAPTER 7. EXTENSION TO W-LINKS 106

property on our list is the genus property of the Alexander polynomial, which states that

deg(∆K) ≤ 2g(K),

where g(K) is the genus of the knot K and deg(∆K) is the degree of ∆K , i.e. the difference of the

smallest and largest exponents of the monomials of ∆K .

To express the genus in the language of meta-monoids, we use the band presentation of a surface.

More specifically, suppose that K is a knot of genus g. We can represent the surface that K bounds

as a bottom tangle with 2g components. Then to recover the surface, we double each of the strand,

reverse the orientation of one side of each band, and then perform stitching. For instance, a knot

of genus 1 is given by

In this manner we can use Γ-calculus to investigate the genus since we have already obtained the

formulas for strand doubling and orientation reversal.

• The Lie algebra g1. Our long-term goal would be the generalize this thesis to the case of g1 (see

[BNV17, BN17, BN16a]). The Lie algebra g1 is a deformed version of g0. Namely, g1 is the 4-

dimensional Lie algebra spanned by b, c, u, w over the ring R = Q[ε]/(ε2 = 0), with b central and

with the brackets given by

[w, c] = w, [c, u] = u, [u,w] = b− 2εc.

Observe that when ε = 0 we recover the Lie algebra g0. In this case the positive crossing is

R+
i,j 7→ exp ((bi − εci)cj + uiwj) ∈ U(g1)⊗̂{i,j}

Ideally we would like to generalize the Fox-Milnor condition to the case of g1, which will hopefully

shed some light on the slice-ribbon conjecture. This thesis is the first step in that direction.
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