Statistics 2211 Assignment 2

Due Thursday, February 23 beginning of class
First four problems - more problems to come

Problem 1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz- L, that is $|F(x)-F(y)|<L|x-y|$ for all x, y. Show that $\operatorname{Var} F(X) \leq L^{2} \operatorname{Var} X$ for all finite mean random variables X.

Problem 2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be Lipschitz- L in all coordinates, let $M_{n}=F\left(X_{1}, \ldots, X_{n} \mid \mathcal{F}_{k}\right)$ where $\mathcal{F}_{k}=\sigma\left(X_{1}, \ldots X_{k}\right)$, and the X_{i} are independent with finite expectation. Show that

$$
\mathbf{E}\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right] \leq L^{2} \operatorname{Var} X_{k} .
$$

Problem 3. Let M_{k} be a martingale with bounded increments $\left|M_{k+1}-M_{k}\right| \leq b_{k}$. Show that $Y_{k}=\exp \left(M_{k}-\sum_{i=1}^{k} b_{k}^{2} / 2\right)$ is a supermartingale.

Problem 4. Show that the chromatic number of an ER random graph $G \sim \mathcal{G}(n, p)$ satisfies $P(\mid \chi(G))-\mathbf{E} \chi(G) \mid>\gamma \sqrt{n}) \leq c a^{\gamma}$ for some universal constants $c>0, a<1$.

