Statistics 2211 Assignment 2

Due Thursday, February 23 beginning of class First four problems – more problems to come

Problem 1. Let $F: \mathbb{R} \to \mathbb{R}$ be Lipschitz-L, that is |F(x) - F(y)| < L|x - y| for all x, y. Show that $\text{Var} F(X) \leq L^2 \text{Var} X$ for all finite mean random variables X.

Problem 2. Let $F: \mathbb{R}^n \to \mathbb{R}$ be Lipschitz-L in all coordinates, let $M_n = F(X_1, \dots, X_n | \mathcal{F}_k)$ where $\mathcal{F}_k = \sigma(X_1, \dots, X_k)$, and the X_i are independent with finite expectation. Show that

$$\mathbf{E}[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}] \le L^2 \text{Var} X_k.$$

Problem 3. Let M_k be a martingale with bounded increments $|M_{k+1} - M_k| \le b_k$. Show that $Y_k = \exp(M_k - \sum_{i=1}^k b_k^2/2)$ is a supermartingale.

Problem 4. Show that the chromatic number of an ER random graph $G \sim \mathcal{G}(n, p)$ satisfies $P(|\chi(G)) - \mathbf{E}\chi(G)| > \gamma \sqrt{n}) \le ca^{\gamma}$ for some universal constants c > 0, a < 1.